Citation: Ma Qiulin, Feng Nan, Ju Huangxian. Advances in Analytical Methodology of Prostate Cancer Markers[J]. Acta Chimica Sinica, ;2020, 78(11): 1213-1222. doi: 10.6023/A20060259 shu

Advances in Analytical Methodology of Prostate Cancer Markers

  • Corresponding author: Ju Huangxian, hxju@nju.edu.cn
  • Received Date: 22 June 2020
    Available Online: 24 August 2020

    Fund Project: the National Natural Science Foundation of China 21635005the National Natural Science Foundation of China 21890741the National Natural Science Foundation of China 21827812Project supported by the National Natural Science Foundation of China (Nos. 21635005, 21827812, 21890741)

Figures(9)

  • The detection of tumor markers plays an important role in the screening, early diagnosis and treatment of high-risk cancer patients. Prostatic cancer is one of the most common malignancies of the male genitourinary system, and has an increasing trend in recent years. Its morbidity is generally influenced by region and ethnicity. The common clinical markers of prostate cancer include prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA), alpha-formyl kievase A mesozyme (AMACR, P504S), prostate-acid phosphatase (PAP), and calcium phosphatidyl binding protein 3 (ANXA3). Most of these markers are composed of proteins or enzymes, which are produced by normal or cancerous prostate cells. Of these, prostate-specific antigen (PSA) and prostate-acid phosphatase (PAP) are considered to be the most meaningful markers of the prostatic cancer. Detection of PSA is widely used in the early detection and monitoring of prostate cancer patients, while analysis of PAP is often used to detect advanced prostate cancer metastases and evaluate the therapeutic effect. Therefore, the analysis of PSA and PAP in the human serum is of great significance for the monitoring of disease status in clinical diagnosis and treatment. In this review the recent advances in the methodological study for detection of prostate cancer markers are reviewed along with the description of their structures and biological functions. The detection technologies of prostate-specific antigen and prostate acid phosphatase are emphatically introduced, which mainly contain colorimetric techniques, electrochemical methods, fluorescence methods and surface resonance plasmon techniques. On the basis of summarizing the research progress in this field in recent decades, the future development of prostate cancer marker analysis is prospected. This review is expected to provide a useful guidance for the study of prostate cancer markers.
  • 加载中
    1. [1]

      Han, S.-J.; Zhang, S.-W.; Chen, W.-Q.; Li, C.-L. Chin. J. Clin. Oncol. 2013, 18, 330(in Chinese).

    2. [2]

      Wu, Q.-J.; Xu, J.-F. Shi, R. J. Shanghai Jiaotong Univ., Med. Sci. 2011, 31, 672(in Chinese).

    3. [3]

      Cuzick, J.; Thorat, M. Lancet Oncol. 2014, 15, 484.  doi: 10.1016/S1470-2045(14)70056-7

    4. [4]

      Xiang, D.-C.; Liu, H.; Meng, Q.-H.; Lan, M.-B.; Wei, G. Acta Chim. Sinica 2013, 71, 1435(in Chinese).
       

    5. [5]

      Zhang, Y.; Zhang, L.-Y.; Liu, L.-M.; Wang, T.; Meng, Y.-Q.; Li, N.; Li, E.-D.; Wang, Z.-J.; Liu, X.-J.; Zheng, J.-X.; Shan, L.-H.; Liu, H.-M.; Zhang, Q.-R. Chin. J. Org. Chem. 2020, 40, 1731.  doi: 10.6023/cjoc202001034

    6. [6]

      Liu, X.; Zhao, J.; Feng, C.-G. Acta Chim. Sinica 2006, 64, 1988(in Chinese).
       

    7. [7]

      He, Q.; Zhang, G.-H. Prog. Oncol. 2017, 15, 7(in Chinese).

    8. [8]

    9. [9]

      Yan, H.-Y.; Xing, J.-C.; Zhang, K.-Y.; Wang, T.; Bai, P.-D. J. Clin. Urology (China) 2020, 35, 242(in Chinese).

    10. [10]

      Ghorbania, F.; Abbaszadehb, H.; Dolatabadic, J. E. N.; Aghebati-Malekid, L.; Yousefi, M. Biosens. Bioelectron. 2019, 142, 111484.  doi: 10.1016/j.bios.2019.111484

    11. [11]

      Vickers, A.; Cronin, A.; Roobol M. Clin. Cancer Res. 2010, 16, 4374.  doi: 10.1158/1078-0432.CCR-10-1328

    12. [12]

      Lilja, H.; Oldbring, J.; Rannevik, G. J. Clin. Invest. 1987, 80, 281.  doi: 10.1172/JCI113070

    13. [13]

      Oesterling, J. J. Urol. 1991, 145, 907.  doi: 10.1016/S0022-5347(17)38491-4

    14. [14]

      Lilja, H.; Ulmert, D.; Vickers, A. J. Nat. Rev. 2008, 8, 268.  doi: 10.1038/nrc2351

    15. [15]

      Stenman, U. H.; Leinonen, J.; Zhang, W. M. Semin. Cancer Biol. 1999, 19, 83.

    16. [16]

      Frydeberg, M.; Stricker, P. D.; Kaye, K. W. Lancet 2005, 349, 1681.

    17. [17]

      Salman, J. W.; Schoots, I.; Carlsson, S. V. Adv. Exp. Med Biol. 2015, 867, 93.

    18. [18]

      Desmée, S.; Mentré, F.; Veyrat-Follet, C. AAPS J. 2015, 17, 691.  doi: 10.1208/s12248-015-9745-5

    19. [19]

      Chen, R.; Huang, Y. R.; Cai, X. B. PLoS One 2015, 10, 130308.

    20. [20]

      Vickers, A. J.; Cronin, A. M.; Aus, G. Cancer 2010, 116, 2612.

    21. [21]

      Denmeade, S. R.; Lou, W.; Lövgren, J.; Isaacs, J. T. Cancer Res. 1997, 57, 4924.

    22. [22]

      Liu, D.; Huang, X.; Wang, F.; Ma, Y.; Niu, G.; Hight-Walker, A. R.; Chen, X. ACS Nano 2013, 7, 5568.  doi: 10.1021/nn401837q

    23. [23]

      Uludag, Y.; Tothill, I. E. Anal. Chem. 2012, 84, 5898.  doi: 10.1021/ac300278p

    24. [24]

      Triroj, N.; Jaroenapibal, P.; Beresford, R. Biosens. Bioelectron. 2011, 26, 2927.  doi: 10.1016/j.bios.2010.11.039

    25. [25]

      Liu, Z.-Y.; Yuan, R.; Chai, Y.-Q.; Zhuo, Y.; Hong, C.-L. Acta Chim. Sinica 2009, 67, 637(in Chinese).
       

    26. [26]

      Xu, S. J.; Liu, Y.; Wang, T. H.; Li, J. H. Anal. Chem. 2011, 83, 3817.  doi: 10.1021/ac200237j

    27. [27]

      Wang, H. M.; Huang, X. Q.; Yuan, P.; Feng, P. Anal. Chim. Acta 2020, 1104, 53.  doi: 10.1016/j.aca.2020.01.009

    28. [28]

      Qi, H.; Li, M.; Dong, M. M.; Ruan, S.; Zhang, C. Anal. Chem. 2014, 86, 1372.  doi: 10.1021/ac402991r

    29. [29]

      Liu, S.; He, P.; Hussain, S.; Lu, H.; Zhou, X.; Lv, F.; Liu, L.; Dai, Z.; Wang, S. ACS Appl. Mater. Interfaces 2018, 10, 6618.  doi: 10.1021/acsami.7b18275

    30. [30]

      Zhao, J.; Wang, S. P.; Zhang, S. B.; Zhao, P. N.; Wang, J. R.; Yan, M.; Ge, S. G.; Yu, J. H. Biosens. Bioelectron.2020, 150, 111958.  doi: 10.1016/j.bios.2019.111958

    31. [31]

      Gao, C. M.; Yu, H. H.; Li, C. J.; Cui, K.; Yu, J. H. Anal. Chem. 2020, 92, 2902.  doi: 10.1021/acs.analchem.9b05611

    32. [32]

      Uludag, Y.; Tothill, I. E. Anal. Chem. 2012, 84, 5898.  doi: 10.1021/ac300278p

    33. [33]

      Shao, F. Y.; Zhang, L. H.; Jiao, L.; Wang, X. Y.; Miao, L. Y.; Li, H.; Zhou, F. M. Anal. Chem. 2018, 90, 8673.  doi: 10.1021/acs.analchem.8b02019

    34. [34]

      Kim, H. J.; Jang, C. H. Sens. Actuators, B 2019, 282, 574.  doi: 10.1016/j.snb.2018.11.104

    35. [35]

      Qi, L.; Hu, Q.; Kang, Q.; Bi, Y.; Jiang, Y.; Yu, L. Anal. Chem. 2019, 91, 11653.  doi: 10.1021/acs.analchem.9b02186

    36. [36]

      Qi, L. B.; Liu, S. Y.; Jiang, Y. F.; Lin, J. M.; Yu, L.; Hu, Q. Z. Anal. Chem. 2020, 92, 3867.  doi: 10.1021/acs.analchem.9b05317

    37. [37]

      Savory, N.; Abe, K.; Sode, K.; Ikebukuro, K. Biosens. Bioelectron. 2010, 26, 1386.  doi: 10.1016/j.bios.2010.07.057

    38. [38]

      Bull, H.; Murray, P. G.; Thomas, D.; Fraser, A.; Nelson, P. N. Mol. Pathol. 2002, 55, 65.  doi: 10.1136/mp.55.2.65

    39. [39]

      Ozu, C.; Nakashima, J.; Horiguchi, Y.; Oya, M.; Ohigashi, T.; Murai, M. Int. J. Urol. 2008, 15, 419.  doi: 10.1111/j.1442-2042.2008.02029.x

    40. [40]

      Makarov, D. V.; Loeb, S.; Getzenberg, R. H.; Partin, A. W. Annu. Rev. Med. 2009, 60, 139.  doi: 10.1146/annurev.med.60.042307.110714

    41. [41]

      Dupont, A.; Cusan, L.; Gomez, J. L. J. Urol. 1991, 146, 1064.  doi: 10.1016/S0022-5347(17)38001-1

    42. [42]

      Sasamoto, H.; Maeda, M.; Tsuji, A.; Manita, H. Anal. Chim. Acta 1995, 309, 221.  doi: 10.1016/0003-2670(95)00084-D

    43. [43]

      Hassan, S. S. M.; Sayour, H. E. M.; Kamel, A. H. Anal. Chim. Acta 2009, 640, 75.  doi: 10.1016/j.aca.2009.03.019

    44. [44]

      Guo, Y. Y.; Li, X. Q.; Dong, Y. M.; Wang, G. L. ACS Sustainable Chem. Eng. 2019, 7, 7572.  doi: 10.1021/acssuschemeng.8b05719

    45. [45]

      Deng, H. H.; Lin, X. L.; Liu, Y. H.; Li, K. L.; Zhuang, Q. Q.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Nanoscale 2017, 9, 10292.  doi: 10.1039/C7NR03399K

    46. [46]

      Huang, Y. Y.; Feng, H.; Liu, W. D.; Chen, J. R.; Qian, Z. S. Anal. Chem. 2016, 88, 11575.  doi: 10.1021/acs.analchem.6b02957

    47. [47]

      Sun, J.; Yang, F.; Yang, X. R. Nanoscale 2015, 7, 16372.  doi: 10.1039/C5NR04826E

    48. [48]

      Fan, Y. B.; Chen, D. Y. Acta Chim. Sinica 2014, 72, 1012(in Chinese).
       

    49. [49]

      Tian, J. Y.; Yang, Y. T.; Lu, J. S. Biosens. Bioelectron. 2019, 135, 160.  doi: 10.1016/j.bios.2019.04.020

    50. [50]

      Li, H.; Xing, J. H.; Chen, J. Q. Carbon 2015, 81, 474.  doi: 10.1016/j.carbon.2014.09.080

    51. [51]

      Li, Z. Z.; Xin, Y. M.; Zhang, Z. H. Anal. Chem. 2015, 87, 10491.  doi: 10.1021/acs.analchem.5b02644

    52. [52]

      Zhang, H.; Wang, G.; Lv, X. J.; Li, J. H. Chem. Mater. 2008, 20, 6543.  doi: 10.1021/cm801796q

    53. [53]

      Cao, S. W.; Yu, J. G. J. Phys. Chem. Lett. 2014, 5, 2101.  doi: 10.1021/jz500546b

    54. [54]

      Hu, S. Z.; Ma, L.; Liu, D.; Gui, J. Z. Appl. Surf. Sci. 2014, 311, 164.  doi: 10.1016/j.apsusc.2014.05.036

    55. [55]

      Martha, S.; Nashim, A.; Parida, K. M. J. Mater. Chem. A 2013, 1, 7816.  doi: 10.1039/c3ta10851a

    56. [56]

      Cui, Y. J.; Ding, Z. X.; Wang, X. C. Phys. Chem. Chem. Phys. 2012, 14, 1455.  doi: 10.1039/C1CP22820J

    57. [57]

      Lu, M. L.; Pei, Z. X.; Zheng, Z. Y.; Huang, M. L.; Liu, P. Phys. Chem. Chem. Phys. 2014, 16, 21280.  doi: 10.1039/C4CP02846E

    58. [58]

      Sumrra, S. H.; Kausar, S.; Raza, M. A.; Chohan, Z. H. J. Mol. Struct. 2018, 1168, 202.  doi: 10.1016/j.molstruc.2018.05.036

    59. [59]

      Zhao, S. F.; Gai, P. P.; Yu, W.; Li, H. Y.; Li, F. Chem. Commun. 2019, 55, 1887.  doi: 10.1039/C8CC09333D

    60. [60]

      Thorum, M. S.; Yadav, J.; Gewirth, A. A. Angew. Chem. Int. Ed. 2009, 48, 165.  doi: 10.1002/anie.200803554

    61. [61]

      Zou, Q. J.; Kegel, L. L.; Booksh, K. S. Anal. Chem. 2015, 87, 2488.  doi: 10.1021/ac504513a

    62. [62]

      Huang, M.; Tian, J.; Zhou, C.; Lu, J. Sens. Actuators, B 2020, 307, 127654.  doi: 10.1016/j.snb.2020.127654

    63. [63]

      Chen, C.; Liu, W.; Li, J.; Lu, Y.; Chen, W. ACS Appl. Mater. Interfaces 2019, 11, 47564.  doi: 10.1021/acsami.9b16279

    64. [64]

      Lin, Z.; Zhang, X. M.; Liu, S. J.; Chen, R. T.; Lin, X.; Chen, W. Anal. Chim. Acta 2020, 1105, 162.  doi: 10.1016/j.aca.2020.01.035

    65. [65]

      Qian, Z. S.; Chai, L. J.; Zhou, Q.; Tang, C.; Chen, J. R.; Feng, H. Anal. Chem. 2015, 87, 7332.  doi: 10.1021/acs.analchem.5b01488

    66. [66]

      Qu, Z. Y.; Na, W. D.; Liu, X. T.; Liu, H.; Su, X. G. Anal. Chim. Acta 2018, 997, 52.  doi: 10.1016/j.aca.2017.10.010

    67. [67]

      Li, S. Q.; Hua, X.; Chen, Q. M.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. Biosens. Bioelectron. 2019, 137, 133.  doi: 10.1016/j.bios.2019.05.010

    68. [68]

      Chen, Y. Y.; Wang, Z. Z.; Hao, X. L.; Li, F. L.; Zheng, Y. J.; Zhang, J. Z.; Lin, X. H.; Weng, S. H. Sens. Actuators, B 2019, 297, 126784.  doi: 10.1016/j.snb.2019.126784

    69. [69]

      Liu, X. J.; Zhang, Y. S.; Liang, A. Y.; Ding, H. W.; Gai, H. W. Chem. Commun. 2019, 55, 11442.  doi: 10.1039/C9CC05548G

    70. [70]

      Liu, G. L.; Long, Y. T.; Choi, Y.; Kang, T.; Lee, L. P. Nat. Methods 2007, 4, 1015.  doi: 10.1038/nmeth1133

    71. [71]

      Li, S. S.; Kong, Q. Y.; Zhang, M.; Yang, F.; Kang, B.; Xu, J. J.; Chen, H. Y. Anal. Chem. 2018, 90, 3833.  doi: 10.1021/acs.analchem.7b04467

    72. [72]

      Choi, Y.; Kang, T.; Lee, L. P. Nano Lett. 2009, 9, 85.  doi: 10.1021/nl802511z

    73. [73]

      Cao, Y.; Lin, Y.; Qian, R. C.; Ying, Y. L.; Si, W.; Sha, J. J.; Chen, Y. F.; Long, Y. T. Chem. Commun. 2016, 52, 5230.  doi: 10.1039/C6CC00694A

    74. [74]

      Yan, X.; Xia, C.; Gao, P. F.; Huang, C. Z. Anal. Chem. 2020, 92, 2130.  doi: 10.1021/acs.analchem.9b04685

    75. [75]

      Zhang, J.; Yuan, Y.; Han, Z.; Liu, G. B. Biosens. Bioelectron. 2019, 141, 111442.  doi: 10.1016/j.bios.2019.111442

    76. [76]

      Feng, N.; Hu, J. J.; Ma, Q. L.; Ju, H. X. Biosens. Bioelectron. 2020, 157, 112159.  doi: 10.1016/j.bios.2020.112159

    77. [77]

      Ma, Q. L.; Chen, Y. L.; Feng, N.; Yan, F.; Ju, H. X. Sci. China Chem. 2020, 63, 11426-020-9850-3.

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(16)
  • Abstract views(1030)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return