Citation: Ma Qiulin, Feng Nan, Ju Huangxian. Advances in Analytical Methodology of Prostate Cancer Markers[J]. Acta Chimica Sinica, ;2020, 78(11): 1213-1222. doi: 10.6023/A20060259 shu

Advances in Analytical Methodology of Prostate Cancer Markers

  • Corresponding author: Ju Huangxian, hxju@nju.edu.cn
  • Received Date: 22 June 2020
    Available Online: 24 August 2020

    Fund Project: the National Natural Science Foundation of China 21635005the National Natural Science Foundation of China 21890741the National Natural Science Foundation of China 21827812Project supported by the National Natural Science Foundation of China (Nos. 21635005, 21827812, 21890741)

Figures(9)

  • The detection of tumor markers plays an important role in the screening, early diagnosis and treatment of high-risk cancer patients. Prostatic cancer is one of the most common malignancies of the male genitourinary system, and has an increasing trend in recent years. Its morbidity is generally influenced by region and ethnicity. The common clinical markers of prostate cancer include prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA), alpha-formyl kievase A mesozyme (AMACR, P504S), prostate-acid phosphatase (PAP), and calcium phosphatidyl binding protein 3 (ANXA3). Most of these markers are composed of proteins or enzymes, which are produced by normal or cancerous prostate cells. Of these, prostate-specific antigen (PSA) and prostate-acid phosphatase (PAP) are considered to be the most meaningful markers of the prostatic cancer. Detection of PSA is widely used in the early detection and monitoring of prostate cancer patients, while analysis of PAP is often used to detect advanced prostate cancer metastases and evaluate the therapeutic effect. Therefore, the analysis of PSA and PAP in the human serum is of great significance for the monitoring of disease status in clinical diagnosis and treatment. In this review the recent advances in the methodological study for detection of prostate cancer markers are reviewed along with the description of their structures and biological functions. The detection technologies of prostate-specific antigen and prostate acid phosphatase are emphatically introduced, which mainly contain colorimetric techniques, electrochemical methods, fluorescence methods and surface resonance plasmon techniques. On the basis of summarizing the research progress in this field in recent decades, the future development of prostate cancer marker analysis is prospected. This review is expected to provide a useful guidance for the study of prostate cancer markers.
  • 加载中
    1. [1]

      Han, S.-J.; Zhang, S.-W.; Chen, W.-Q.; Li, C.-L. Chin. J. Clin. Oncol. 2013, 18, 330(in Chinese).

    2. [2]

      Wu, Q.-J.; Xu, J.-F. Shi, R. J. Shanghai Jiaotong Univ., Med. Sci. 2011, 31, 672(in Chinese).

    3. [3]

      Cuzick, J.; Thorat, M. Lancet Oncol. 2014, 15, 484.  doi: 10.1016/S1470-2045(14)70056-7

    4. [4]

      Xiang, D.-C.; Liu, H.; Meng, Q.-H.; Lan, M.-B.; Wei, G. Acta Chim. Sinica 2013, 71, 1435(in Chinese).
       

    5. [5]

      Zhang, Y.; Zhang, L.-Y.; Liu, L.-M.; Wang, T.; Meng, Y.-Q.; Li, N.; Li, E.-D.; Wang, Z.-J.; Liu, X.-J.; Zheng, J.-X.; Shan, L.-H.; Liu, H.-M.; Zhang, Q.-R. Chin. J. Org. Chem. 2020, 40, 1731.  doi: 10.6023/cjoc202001034

    6. [6]

      Liu, X.; Zhao, J.; Feng, C.-G. Acta Chim. Sinica 2006, 64, 1988(in Chinese).
       

    7. [7]

      He, Q.; Zhang, G.-H. Prog. Oncol. 2017, 15, 7(in Chinese).

    8. [8]

    9. [9]

      Yan, H.-Y.; Xing, J.-C.; Zhang, K.-Y.; Wang, T.; Bai, P.-D. J. Clin. Urology (China) 2020, 35, 242(in Chinese).

    10. [10]

      Ghorbania, F.; Abbaszadehb, H.; Dolatabadic, J. E. N.; Aghebati-Malekid, L.; Yousefi, M. Biosens. Bioelectron. 2019, 142, 111484.  doi: 10.1016/j.bios.2019.111484

    11. [11]

      Vickers, A.; Cronin, A.; Roobol M. Clin. Cancer Res. 2010, 16, 4374.  doi: 10.1158/1078-0432.CCR-10-1328

    12. [12]

      Lilja, H.; Oldbring, J.; Rannevik, G. J. Clin. Invest. 1987, 80, 281.  doi: 10.1172/JCI113070

    13. [13]

      Oesterling, J. J. Urol. 1991, 145, 907.  doi: 10.1016/S0022-5347(17)38491-4

    14. [14]

      Lilja, H.; Ulmert, D.; Vickers, A. J. Nat. Rev. 2008, 8, 268.  doi: 10.1038/nrc2351

    15. [15]

      Stenman, U. H.; Leinonen, J.; Zhang, W. M. Semin. Cancer Biol. 1999, 19, 83.

    16. [16]

      Frydeberg, M.; Stricker, P. D.; Kaye, K. W. Lancet 2005, 349, 1681.

    17. [17]

      Salman, J. W.; Schoots, I.; Carlsson, S. V. Adv. Exp. Med Biol. 2015, 867, 93.

    18. [18]

      Desmée, S.; Mentré, F.; Veyrat-Follet, C. AAPS J. 2015, 17, 691.  doi: 10.1208/s12248-015-9745-5

    19. [19]

      Chen, R.; Huang, Y. R.; Cai, X. B. PLoS One 2015, 10, 130308.

    20. [20]

      Vickers, A. J.; Cronin, A. M.; Aus, G. Cancer 2010, 116, 2612.

    21. [21]

      Denmeade, S. R.; Lou, W.; Lövgren, J.; Isaacs, J. T. Cancer Res. 1997, 57, 4924.

    22. [22]

      Liu, D.; Huang, X.; Wang, F.; Ma, Y.; Niu, G.; Hight-Walker, A. R.; Chen, X. ACS Nano 2013, 7, 5568.  doi: 10.1021/nn401837q

    23. [23]

      Uludag, Y.; Tothill, I. E. Anal. Chem. 2012, 84, 5898.  doi: 10.1021/ac300278p

    24. [24]

      Triroj, N.; Jaroenapibal, P.; Beresford, R. Biosens. Bioelectron. 2011, 26, 2927.  doi: 10.1016/j.bios.2010.11.039

    25. [25]

      Liu, Z.-Y.; Yuan, R.; Chai, Y.-Q.; Zhuo, Y.; Hong, C.-L. Acta Chim. Sinica 2009, 67, 637(in Chinese).
       

    26. [26]

      Xu, S. J.; Liu, Y.; Wang, T. H.; Li, J. H. Anal. Chem. 2011, 83, 3817.  doi: 10.1021/ac200237j

    27. [27]

      Wang, H. M.; Huang, X. Q.; Yuan, P.; Feng, P. Anal. Chim. Acta 2020, 1104, 53.  doi: 10.1016/j.aca.2020.01.009

    28. [28]

      Qi, H.; Li, M.; Dong, M. M.; Ruan, S.; Zhang, C. Anal. Chem. 2014, 86, 1372.  doi: 10.1021/ac402991r

    29. [29]

      Liu, S.; He, P.; Hussain, S.; Lu, H.; Zhou, X.; Lv, F.; Liu, L.; Dai, Z.; Wang, S. ACS Appl. Mater. Interfaces 2018, 10, 6618.  doi: 10.1021/acsami.7b18275

    30. [30]

      Zhao, J.; Wang, S. P.; Zhang, S. B.; Zhao, P. N.; Wang, J. R.; Yan, M.; Ge, S. G.; Yu, J. H. Biosens. Bioelectron.2020, 150, 111958.  doi: 10.1016/j.bios.2019.111958

    31. [31]

      Gao, C. M.; Yu, H. H.; Li, C. J.; Cui, K.; Yu, J. H. Anal. Chem. 2020, 92, 2902.  doi: 10.1021/acs.analchem.9b05611

    32. [32]

      Uludag, Y.; Tothill, I. E. Anal. Chem. 2012, 84, 5898.  doi: 10.1021/ac300278p

    33. [33]

      Shao, F. Y.; Zhang, L. H.; Jiao, L.; Wang, X. Y.; Miao, L. Y.; Li, H.; Zhou, F. M. Anal. Chem. 2018, 90, 8673.  doi: 10.1021/acs.analchem.8b02019

    34. [34]

      Kim, H. J.; Jang, C. H. Sens. Actuators, B 2019, 282, 574.  doi: 10.1016/j.snb.2018.11.104

    35. [35]

      Qi, L.; Hu, Q.; Kang, Q.; Bi, Y.; Jiang, Y.; Yu, L. Anal. Chem. 2019, 91, 11653.  doi: 10.1021/acs.analchem.9b02186

    36. [36]

      Qi, L. B.; Liu, S. Y.; Jiang, Y. F.; Lin, J. M.; Yu, L.; Hu, Q. Z. Anal. Chem. 2020, 92, 3867.  doi: 10.1021/acs.analchem.9b05317

    37. [37]

      Savory, N.; Abe, K.; Sode, K.; Ikebukuro, K. Biosens. Bioelectron. 2010, 26, 1386.  doi: 10.1016/j.bios.2010.07.057

    38. [38]

      Bull, H.; Murray, P. G.; Thomas, D.; Fraser, A.; Nelson, P. N. Mol. Pathol. 2002, 55, 65.  doi: 10.1136/mp.55.2.65

    39. [39]

      Ozu, C.; Nakashima, J.; Horiguchi, Y.; Oya, M.; Ohigashi, T.; Murai, M. Int. J. Urol. 2008, 15, 419.  doi: 10.1111/j.1442-2042.2008.02029.x

    40. [40]

      Makarov, D. V.; Loeb, S.; Getzenberg, R. H.; Partin, A. W. Annu. Rev. Med. 2009, 60, 139.  doi: 10.1146/annurev.med.60.042307.110714

    41. [41]

      Dupont, A.; Cusan, L.; Gomez, J. L. J. Urol. 1991, 146, 1064.  doi: 10.1016/S0022-5347(17)38001-1

    42. [42]

      Sasamoto, H.; Maeda, M.; Tsuji, A.; Manita, H. Anal. Chim. Acta 1995, 309, 221.  doi: 10.1016/0003-2670(95)00084-D

    43. [43]

      Hassan, S. S. M.; Sayour, H. E. M.; Kamel, A. H. Anal. Chim. Acta 2009, 640, 75.  doi: 10.1016/j.aca.2009.03.019

    44. [44]

      Guo, Y. Y.; Li, X. Q.; Dong, Y. M.; Wang, G. L. ACS Sustainable Chem. Eng. 2019, 7, 7572.  doi: 10.1021/acssuschemeng.8b05719

    45. [45]

      Deng, H. H.; Lin, X. L.; Liu, Y. H.; Li, K. L.; Zhuang, Q. Q.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Nanoscale 2017, 9, 10292.  doi: 10.1039/C7NR03399K

    46. [46]

      Huang, Y. Y.; Feng, H.; Liu, W. D.; Chen, J. R.; Qian, Z. S. Anal. Chem. 2016, 88, 11575.  doi: 10.1021/acs.analchem.6b02957

    47. [47]

      Sun, J.; Yang, F.; Yang, X. R. Nanoscale 2015, 7, 16372.  doi: 10.1039/C5NR04826E

    48. [48]

      Fan, Y. B.; Chen, D. Y. Acta Chim. Sinica 2014, 72, 1012(in Chinese).
       

    49. [49]

      Tian, J. Y.; Yang, Y. T.; Lu, J. S. Biosens. Bioelectron. 2019, 135, 160.  doi: 10.1016/j.bios.2019.04.020

    50. [50]

      Li, H.; Xing, J. H.; Chen, J. Q. Carbon 2015, 81, 474.  doi: 10.1016/j.carbon.2014.09.080

    51. [51]

      Li, Z. Z.; Xin, Y. M.; Zhang, Z. H. Anal. Chem. 2015, 87, 10491.  doi: 10.1021/acs.analchem.5b02644

    52. [52]

      Zhang, H.; Wang, G.; Lv, X. J.; Li, J. H. Chem. Mater. 2008, 20, 6543.  doi: 10.1021/cm801796q

    53. [53]

      Cao, S. W.; Yu, J. G. J. Phys. Chem. Lett. 2014, 5, 2101.  doi: 10.1021/jz500546b

    54. [54]

      Hu, S. Z.; Ma, L.; Liu, D.; Gui, J. Z. Appl. Surf. Sci. 2014, 311, 164.  doi: 10.1016/j.apsusc.2014.05.036

    55. [55]

      Martha, S.; Nashim, A.; Parida, K. M. J. Mater. Chem. A 2013, 1, 7816.  doi: 10.1039/c3ta10851a

    56. [56]

      Cui, Y. J.; Ding, Z. X.; Wang, X. C. Phys. Chem. Chem. Phys. 2012, 14, 1455.  doi: 10.1039/C1CP22820J

    57. [57]

      Lu, M. L.; Pei, Z. X.; Zheng, Z. Y.; Huang, M. L.; Liu, P. Phys. Chem. Chem. Phys. 2014, 16, 21280.  doi: 10.1039/C4CP02846E

    58. [58]

      Sumrra, S. H.; Kausar, S.; Raza, M. A.; Chohan, Z. H. J. Mol. Struct. 2018, 1168, 202.  doi: 10.1016/j.molstruc.2018.05.036

    59. [59]

      Zhao, S. F.; Gai, P. P.; Yu, W.; Li, H. Y.; Li, F. Chem. Commun. 2019, 55, 1887.  doi: 10.1039/C8CC09333D

    60. [60]

      Thorum, M. S.; Yadav, J.; Gewirth, A. A. Angew. Chem. Int. Ed. 2009, 48, 165.  doi: 10.1002/anie.200803554

    61. [61]

      Zou, Q. J.; Kegel, L. L.; Booksh, K. S. Anal. Chem. 2015, 87, 2488.  doi: 10.1021/ac504513a

    62. [62]

      Huang, M.; Tian, J.; Zhou, C.; Lu, J. Sens. Actuators, B 2020, 307, 127654.  doi: 10.1016/j.snb.2020.127654

    63. [63]

      Chen, C.; Liu, W.; Li, J.; Lu, Y.; Chen, W. ACS Appl. Mater. Interfaces 2019, 11, 47564.  doi: 10.1021/acsami.9b16279

    64. [64]

      Lin, Z.; Zhang, X. M.; Liu, S. J.; Chen, R. T.; Lin, X.; Chen, W. Anal. Chim. Acta 2020, 1105, 162.  doi: 10.1016/j.aca.2020.01.035

    65. [65]

      Qian, Z. S.; Chai, L. J.; Zhou, Q.; Tang, C.; Chen, J. R.; Feng, H. Anal. Chem. 2015, 87, 7332.  doi: 10.1021/acs.analchem.5b01488

    66. [66]

      Qu, Z. Y.; Na, W. D.; Liu, X. T.; Liu, H.; Su, X. G. Anal. Chim. Acta 2018, 997, 52.  doi: 10.1016/j.aca.2017.10.010

    67. [67]

      Li, S. Q.; Hua, X.; Chen, Q. M.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. Biosens. Bioelectron. 2019, 137, 133.  doi: 10.1016/j.bios.2019.05.010

    68. [68]

      Chen, Y. Y.; Wang, Z. Z.; Hao, X. L.; Li, F. L.; Zheng, Y. J.; Zhang, J. Z.; Lin, X. H.; Weng, S. H. Sens. Actuators, B 2019, 297, 126784.  doi: 10.1016/j.snb.2019.126784

    69. [69]

      Liu, X. J.; Zhang, Y. S.; Liang, A. Y.; Ding, H. W.; Gai, H. W. Chem. Commun. 2019, 55, 11442.  doi: 10.1039/C9CC05548G

    70. [70]

      Liu, G. L.; Long, Y. T.; Choi, Y.; Kang, T.; Lee, L. P. Nat. Methods 2007, 4, 1015.  doi: 10.1038/nmeth1133

    71. [71]

      Li, S. S.; Kong, Q. Y.; Zhang, M.; Yang, F.; Kang, B.; Xu, J. J.; Chen, H. Y. Anal. Chem. 2018, 90, 3833.  doi: 10.1021/acs.analchem.7b04467

    72. [72]

      Choi, Y.; Kang, T.; Lee, L. P. Nano Lett. 2009, 9, 85.  doi: 10.1021/nl802511z

    73. [73]

      Cao, Y.; Lin, Y.; Qian, R. C.; Ying, Y. L.; Si, W.; Sha, J. J.; Chen, Y. F.; Long, Y. T. Chem. Commun. 2016, 52, 5230.  doi: 10.1039/C6CC00694A

    74. [74]

      Yan, X.; Xia, C.; Gao, P. F.; Huang, C. Z. Anal. Chem. 2020, 92, 2130.  doi: 10.1021/acs.analchem.9b04685

    75. [75]

      Zhang, J.; Yuan, Y.; Han, Z.; Liu, G. B. Biosens. Bioelectron. 2019, 141, 111442.  doi: 10.1016/j.bios.2019.111442

    76. [76]

      Feng, N.; Hu, J. J.; Ma, Q. L.; Ju, H. X. Biosens. Bioelectron. 2020, 157, 112159.  doi: 10.1016/j.bios.2020.112159

    77. [77]

      Ma, Q. L.; Chen, Y. L.; Feng, N.; Yan, F.; Ju, H. X. Sci. China Chem. 2020, 63, 11426-020-9850-3.

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    5. [5]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    8. [8]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    13. [13]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    14. [14]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    15. [15]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    16. [16]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    17. [17]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    18. [18]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    19. [19]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    20. [20]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

Metrics
  • PDF Downloads(18)
  • Abstract views(1405)
  • HTML views(364)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return