Coacervate and Its Application in the Field of Artificial Cells
- Corresponding author: Mu Wei, muwei@hit.edu.cn Han Xiaojun, hanxiaojun@hit.edu.cn
Citation: Yan Lin, Ren Yongshuo, Wang Xuejing, Mu Wei, Han Xiaojun. Coacervate and Its Application in the Field of Artificial Cells[J]. Acta Chimica Sinica, ;2020, 78(11): 1150-1163. doi: 10.6023/A20060253
Nakashima, K. K.; Vibhute, M. A.; Spruijt, E. Front. Mol. Biosci. 2019, 6, 1.
doi: 10.3389/fmolb.2019.00001
Lau, H. K.; Paul, A.; Sidhu, I.; Li, L.; Sabanayagam, C. R.; Parekh, S. H.; Kiick, K. L. Adv. Sci. 2018, 5, 1701010.
doi: 10.1002/advs.201701010
Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Adv. Colloid Interface Sci. 2011, 167, 24.
doi: 10.1016/j.cis.2011.06.006
Bungenberg De Jong, H. G. Ned. Tijdschr. Geneeskd. 1952, 96, 1489.
Kerfeld, C. A.; Heinhorst, S.; Cannon, G. C. Annu. Rev. Microbiol. 2010, 64, 391.
doi: 10.1146/annurev.micro.112408.134211
Alberti, S. J. Cell Sci. 2017, 130, 2789.
doi: 10.1242/jcs.200295
Gabaldon, T.; Pittis, A. A. Biochimie 2015, 119, 262.
doi: 10.1016/j.biochi.2015.03.021
Heald, R.; Cohen-Fix, O. Curr. Opin. Cell Biol. 2014, 26, 79.
doi: 10.1016/j.ceb.2013.10.006
Sirri, V.; Urcuqui-Inchima, S.; Roussel, P.; Hernandez-Verdun, D. Histochem. Cell Biol. 2008, 129, 13.
doi: 10.1007/s00418-007-0359-6
Crowe, C. D.; Keating, C. D. Interface Focus 2018, 8, 20180032.
doi: 10.1098/rsfs.2018.0032
Aumiller, W. M., Jr.; Davis, B. W.; Keating, C. D. Int. Rev. Cell Mol. Biol. 2014, 307, 109.
doi: 10.1016/B978-0-12-800046-5.00005-9
Shin, Y.; Brangwynne, C. P. Science 2017, 357, eaaf4382.
doi: 10.1126/science.aaf4382
Banani, S. F.; Lee, H. O.; Hyman, A. A.; Rosen, M. K. Nat. Rev. Mol. Cell Biol. 2017, 18, 285.
doi: 10.1038/nrm.2017.7
Boisvert, F. M.; van Koningsbruggen, S.; Navascues, J.; Lamond, A. I. Nat. Rev. Mol. Cell Biol. 2007, 8, 574.
Gall, J. G. Nat. Rev. Mol. Cell Biol. 2003, 4, 975.
doi: 10.1038/nrm1262
Jain, S.; Wheeler, J. R.; Walters, R. W.; Agrawal, A.; Barsic, A.; Parker, R. Cell 2016, 164, 487.
doi: 10.1016/j.cell.2015.12.038
Brangwynne, C. P.; Eckmann, C. R.; Courson, D. S.; Rybarska, A.; Hoege, C.; Gharakhani, J.; Julicher, F.; Hyman, A. A. Science 2009, 324, 1729.
doi: 10.1126/science.1172046
Iwashita, K.; Handa, A.; Shiraki, K. Int. J. Biol. Macromol. 2018, 120, 10.
doi: 10.1016/j.ijbiomac.2018.08.063
Franzmann, T. M.; Jahnel, M.; Pozniakovsky, A.; Mahamid, J.; Holehouse, A. S.; Nuske, E.; Richter, D.; Baumeister, W.; Grill, S. W.; Pappu, R. V.; Hyman, A. A.; Alberti, S. Science 2018, 359, eaao5654.
doi: 10.1126/science.aao5654
Anderson, P.; Kedersha, N. Trends Biochem. Sci. 2008, 33, 141.
doi: 10.1016/j.tibs.2007.12.003
French, J. B.; Jones, S. A.; Deng, H. Y.; Pedley, A. M.; Kim, D.; Chan, C. Y.; Hu, H. B.; Pugh, R. J.; Zhao, H.; Zhang, Y. X.; Huang, T. J.; Fang, Y.; Zhuang, X. W.; Benkovic, S. J. Science 2016, 351, 733.
doi: 10.1126/science.aac6054
Alberti, S.; Gladfelter, A.; Mittag, T. Cell 2019, 176, 419.
doi: 10.1016/j.cell.2018.12.035
Lentini, R.; Yeh Martin, N.; Mansy, S. S. Curr. Opin. Chem. Biol. 2016, 34, 53.
doi: 10.1016/j.cbpa.2016.06.013
Aufinger, L.; Simmel, F. C. Chem. Eur. J. 2019, 25, 12659.
doi: 10.1002/chem.201901726
Engelhart, A. E.; Adamala, K. P.; Szostak, J. W. Nat. Chem. 2016, 8, 448.
doi: 10.1038/nchem.2475
Budin, I.; Debnath, A.; Szostak, J. W. J. Am. Chem. Soc. 2012, 134, 20812.
doi: 10.1021/ja310382d
Zong, W.; Ma, S. H.; Zhang, X. N.; Wang, X. J.; Li, Q. C.; Han, X. J. J. Am. Chem. Soc. 2017, 139, 9955.
doi: 10.1021/jacs.7b04009
Zong, W.; Zhang, X. N.; Li, C.; Han, X. J. ACS Synth. Biol. 2018, 7, 945.
doi: 10.1021/acssynbio.8b00045
Li, S. B.; Wang, X. J.; Mu, W.; Han, X. J. Anal. Chem. 2019, 91, 6859.
Kamiya, K.; Takeuchi, S. J. Mat. Chem. B 2017, 5, 5911.
doi: 10.1039/C7TB01322A
Dupin, A.; Simmel, F. C. Nat. Chem. 2019, 11, 32.
doi: 10.1038/s41557-018-0174-9
van Swaay, D.; deMello, A. Lab Chip 2013, 13, 752.
doi: 10.1039/c2lc41121k
Li, Q. C.; Wang, X. J.; Ma, S. H.; Zhang, Y.; Han, X. J. Colloids Surf. B-Biointerfaces 2016, 147, 368.
doi: 10.1016/j.colsurfb.2016.08.018
Tian, W.; Sasaki, Y.; Ikeda, A.; Kikuchi, J.; Song, X.; Fan, S. Acta Chim. Sinica 2004, 62, 1230(in Chinese).
Li, L.; Lin, M.; Qiu, F.; Yang, Y. Acta Chim. Sinica 2005, 63, 1375(in Chinese).
Meng, F. H.; Zhong, Z. Y. J. Phys. Chem. Lett. 2011, 2, 1533.
doi: 10.1021/jz200007h
LoPresti, C.; Lomas, H.; Massignani, M.; Smart, T.; Battaglia, G. J. Mater. Chem. 2009, 19, 3576.
doi: 10.1039/b818869f
Oparin, A. I. Origin of Life, Dover Publications, New York, 1953.
Poudyal, R. R.; Pir Cakmak, F.; Keating, C. D.; Bevilacqua, P. C. Biochemistry 2018, 57, 2509.
doi: 10.1021/acs.biochem.8b00081
Overbeek, J. T.; Voorn, M. J. J. Cell. Physiol. 1957, 49, 7.
doi: 10.1002/jcp.1030490404
Kim, S.; Huang, J.; Lee, Y.; Dutta, S.; Yoo, H. Y.; Jung, Y. M.; Jho, Y.; Zeng, H.; Hwang, D. S. Proc. Natl. Acad. Sci. 2016, 113, E847.
doi: 10.1073/pnas.1521521113
Hoffmann, K. Q.; Perry, S. L.; Leon, L.; Priftis, D.; Tirrell, M.; de Pablo, J. J. Soft Matter 2015, 11, 1525.
doi: 10.1039/C4SM02336F
Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. Chem. Soc. Rev. 2013, 42, 7214.
doi: 10.1039/c3cs35499g
Blocher, W. C.; Perry, S. L. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol. 2017, 9, e1442.
doi: 10.1002/wnan.1442
Priftis, D.; Xia, X.; Margossian, K. O.; Perry, S. L.; Leon, L.; Qin, J.; de Pablo, J. J.; Tirrell, M. Macromolecules 2014, 47, 3076.
doi: 10.1021/ma500245j
Jeon, B. J.; Nguyen, D. T.; Abraham, G. R.; Conrad, N.; Fygenson, D. K.; Saleh, O. A. Soft Matter 2018, 14, 7009.
doi: 10.1039/C8SM01085D
Schuster, B. S.; Reed, E. H.; Parthasarathy, R.; Jahnke, C. N.; Caldwell, R. M.; Bermudez, J. G.; Ramage, H.; Good, M. C.; Hammer, D. A. Nat. Commun. 2018, 9, 12.
doi: 10.1038/s41467-017-02416-0
Deng, N.-N.; Huck W. T. S. Angew. Chem. Int. Ed. 2017, 56, 9736.
doi: 10.1002/anie.201703145
Koga, S.; Williams, D. S.; Perriman, A. W.; Mann, S. Nat. Chem. 2011, 3, 720.
doi: 10.1038/nchem.1110
Black, K. A.; Priftis, D.; Perry, S. L.; Yip, J.; Byun, W. Y.; Tirrell, M. ACS Macro Lett. 2014, 3, 1088.
doi: 10.1021/mz500529v
Aumiller, W. M., Jr.; Keating, C. D. Nat. Chem. 2016, 8, 129.
doi: 10.1038/nchem.2414
Spruijt, E.; Sprakel, J.; Stuart, M. A. C.; van der Gucht, J. Soft Matter 2010, 6, 172.
doi: 10.1039/B911541B
Frankel, E. A.; Bevilacqua, P. C.; Keating, C. D. Langmuir 2016, 32, 2041.
doi: 10.1021/acs.langmuir.5b04462
Zhao, M. M.; Zacharia, N. S. J. Chem. Phys. 2018, 149, 163326.
doi: 10.1063/1.5040346
Lindhoud, S.; Claessens, M. M. A. E. Soft Matter 2016, 12, 408.
doi: 10.1039/C5SM02386F
Obermeyer, A. C.; Mills, C. E.; Dong, X. H.; Flores, R. J.; Olsen, B. D. Soft Matter 2016, 12, 3570.
doi: 10.1039/C6SM00002A
Kapelner, R. A.; Obermeyer, A. C. Chem. Sci. 2019, 10, 2700.
doi: 10.1039/C8SC04253E
Cummings, C. S.; Obermeyer, A. C. Biochemistry 2018, 57, 314.
doi: 10.1021/acs.biochem.7b00990
Horn, J. M.; Kapelner, R. A.; Obermeyer, A. C. Polymers 2019, 11, 578.
doi: 10.3390/polym11040578
Pathak, J.; Rawat, K. RSC Adv. 2015, 5, 67066.
doi: 10.1039/C5RA07195J
Pathak, J.; Rawat, K. J. Phys. Chem. B 2014, 118, 11161.
doi: 10.1021/jp5068846
Perry, S. L.; Leon, L.; Hoffmann, K. Q.; Kade, M. J.; Priftis, D.; Black, K. A.; Wong, D.; Klein, R. A.; Pierce, C. F.; Margossian, K. O.; Whitmer, J. K.; Qin, J.; de Pablo, J. J.; Tirrell, M. Nat. Commun. 2015, 6, 8.
Aumiller, W. M., Jr.; Keating, C. D. Adv. Colloid Interface Sci. 2017, 239, 75.
doi: 10.1016/j.cis.2016.06.011
Souza, C. J. F.; da Costa, A. R.; Souza, C. F.; Tosin, F. F. S.; Garcia-Rojas, E. E. Int. J. Biol. Macromol. 2018, 107, 1253.
doi: 10.1016/j.ijbiomac.2017.09.104
Souza, C. J. F.; Garcia-Rojas, E. E. Food Hydrocoll. 2015, 47, 124.
doi: 10.1016/j.foodhyd.2015.01.010
Hwang, D. S.; Zeng, H. B.; Srivastava, A.; Krogstad, D. V.; Tirrell, M.; Israelachvili, J. N.; Waite, J. H. Soft Matter 2010, 6, 3232.
doi: 10.1039/c002632h
Zhang, X. M.; Lin, Y. X.; Eschmann, N. A.; Zhou, H. J.; Rauch, J. N.; Hernandez, I.; Guzman, E.; Kosik, K. S.; Han, S. I. PLoS Biol. 2017, 15, 28.
Mason, A. F.; Buddingh, B. C.; Williams, D. S.; van Hest, J. C. M. J. Am. Chem. Soc. 2017, 139, 17309.
doi: 10.1021/jacs.7b10846
Mason, A. F.; Yewdall, N. A.; Welzen, P. L. W.; Shao, J.; van Stevendaal, M.; van Hest, J. C. M.; Williams, D. S.; Abdelmohsen, L. ACS Cent. Sci. 2019, 5, 1360.
doi: 10.1021/acscentsci.9b00345
Qiao, Y.; Li, M.; Booth, R.; Mann, S. Nat. Chem. 2017, 9, 110.
doi: 10.1038/nchem.2617
Dora Tang, T. Y.; Rohaida Che Hak, C.; Thompson, A. J.; Kuimova, M. K.; Williams, D. S.; Perriman, A. W.; Mann, S. Nat. Chem. 2014, 6, 527.
doi: 10.1038/nchem.1921
Priftis, D.; Farina, R.; Tirrell, M. Langmuir 2012, 28, 8721.
doi: 10.1021/la300769d
Lu, T.; Spruijt, E. J. Am. Chem. Soc. 2020, 142, 2905.
doi: 10.1021/jacs.9b11468
Ulijn, R. V.; Lampel, A. Isr. J. Chem. 2019, 1.
Choi, J.-M.; Wang, J.; Holehouse, A. S.; Alberti, S.; Hyman, A. A.; Pappu, R. V. Biophys. J. 2018, 114, 561A.
Wei, M.-T.; Elbaum-Garfinkle, S.; Holehouse, A. S.; Chen, C. C.-H.; Feric, M.; Arnold, C. B.; Priestley, R. D.; Pappu, R. V.; Brangwynne, C. P. Nat. Chem. 2017, 9, 1118.
doi: 10.1038/nchem.2803
Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biochem. 2014, 83, 553.
doi: 10.1146/annurev-biochem-072711-164947
Cohan, M. C.; Posey, A. E.; Mittal, A.; Grigsby, S. J.; Holehouse, A. S.; Buske, P. J.; Levin, P. A.; Pappu, R. V. Mol. Biol. Cell 2017, 114, 590A.
Harmon, T. S.; Holehouse, A. S.; Pappu, R. V. New J. Phys. 2018, 20, 045002.
doi: 10.1088/1367-2630/aab8d9
Ruff, K. M.; Pappu, R. V.; Holehouse, A. S. Curr. Opin. Struct. Biol. 2019, 56, 1.
Molliex, A.; Temirov, J.; Lee, J.; Coughlin, M.; Kanagaraj, A. P.; Kim, H. J.; Mittag, T.; Taylor, J. P. Cell 2015, 163, 123.
doi: 10.1016/j.cell.2015.09.015
Elbaum-Garfinkle, S.; Kim, Y.; Szczepaniak, K.; Chen, C. C. H.; Eckmann, C. R.; Myong, S.; Brangwynne, C. P. Proc. Natl. Acad. Sci. 2015, 112, 7189.
doi: 10.1073/pnas.1504822112
Tan, Y. P.; Hoon, S.; Guerette, P. A.; Wei, W.; Ghadban, A.; Hao, C.; Miserez, A.; Waite, J. H. Nat. Chem. Biol. 2015, 11, 488.
doi: 10.1038/nchembio.1833
Madinya, J. J.; Chang, L. W.; Perry, S. L.; Sing, C. E. Mol. Syst. Des. Eng. 2020, 5, 632.
doi: 10.1039/C9ME00074G
Mountain, G. A.; Keating, C. D. Biomacromolecules 2020, 21, 630.
doi: 10.1021/acs.biomac.9b01354
Jing, H.; Bai, Q.; Lin, Y. n.; Chang, H.; Yin, D.; Liang, D. Langmuir 2020, 36, 8017.
doi: 10.1021/acs.langmuir.0c01864
Yin, Y. D.; Niu, L.; Zhu, X. C.; Zhao, M. P.; Zhang, Z. X.; Mann, S.; Liang, D. H. Nat. Commun. 2016, 7, 7.
Yin, Y. D.; Chang, H. J.; Jing, H. R.; Zhang, Z. X.; Yan, D. D.; Mann, S.; Liang, D. H. Soft Matter 2018, 14, 6514.
doi: 10.1039/C8SM01168K
Fothergill, J.; Li, M.; Davis, S. A.; Cunningham, J. A.; Mann, S. Langmuir 2014, 30, 14591.
doi: 10.1021/la503746u
Dompe, M.; Cedano-Serrano, F. J.; Heckert, O.; van den Heuvel, N.; van der Gucht, J.; Tran, Y.; Hourdet, D.; Creton, C.; Kamperman, M. Adv. Mater. 2019, 31, e1808179.
doi: 10.1002/adma.201808179
Kumar, B.; Fothergill, J.; Bretherton, J.; Tian, L. F.; Patil, A. J.; Davis, S. A.; Mann, S. Chem. Commun. 2018, 54, 3594.
doi: 10.1039/C8CC01129J
Lawrence, M. S.; Phillips, K. J.; Liu, D. R. J. Am. Chem. Soc. 2007, 129, 10110.
doi: 10.1021/ja071641y
Comert, F.; Malanowski, A. J.; Azarikia, F.; Dubin, P. L. Soft Matter 2016, 12, 4154.
doi: 10.1039/C6SM00044D
Comert, F.; Xu, A. Y.; Madro, S. P.; Liadinskaia, V.; Dubin, P. L. J. Chem. Phys. 2018, 149, 163321.
doi: 10.1063/1.5029296
Xu, A. Y.; Melton, L. D.; Ryan, T. M.; Mata, J. P.; Rekas, A.; Williams, M. A. K.; McGillivray, D. J. Food Hydrocoll. 2018, 77, 952.
doi: 10.1016/j.foodhyd.2017.11.045
Pandey, P. K.; Kaushik, P.; Rawat, K.; Aswal, V. K.; Bohidar, H. B. Soft Matter 2017, 13, 6784.
doi: 10.1039/C7SM01222E
Lin, Y.; Jing, H.; Liu, Z.; Chen, J.; Liang, D. Langmuir 2020, 36, 1709.
doi: 10.1021/acs.langmuir.9b03561
Simon, J. R.; Carroll, N. J.; Rubinstein, M.; Chilkoti, A.; Lopez, G. P. Nat. Chem. 2017, 9, 509.
doi: 10.1038/nchem.2715
Reed, E. H.; Schuster, B. S. ACS Synth. Biol. 2020, 9, 500.
doi: 10.1021/acssynbio.9b00503
Shin, Y.; Berry, J.; Pannucci, N.; Haataja, M. P.; Toettcher, J. E.; Brangwynne, C. P. Cell 2017, 168, 159.
doi: 10.1016/j.cell.2016.11.054
Mitrea, D. M.; Kriwacki, R. W. Cell Commun. Signaling 2016, 14, R1097.
Bayley, H.; Mason, A. F.; van Hest, J. C. M. Emerging Top. Life Sci. 2019, 3, 567.
doi: 10.1042/ETLS20190094
Ghellab, S. E.; Li, Q. C.; Fuhs, T.; Bi, H. M.; Han, X. J. Colloid Surf. B-Biointerfaces 2017, 160, 697.
doi: 10.1016/j.colsurfb.2017.10.025
Spoelstra, W. K.; Deshpande, S.; Dekker, C. Curr. Opin. Biotechnol. 2018, 51, 47.
doi: 10.1016/j.copbio.2017.11.005
Blain, J. C.; Szostak, J. W. Annu. Rev. Biochem. 2014, 83, 615.
doi: 10.1146/annurev-biochem-080411-124036
Vance, J. E. Traffic 2015, 16, 1.
doi: 10.1111/tra.12230
Zhang, Y. M.; Rock, C. O. Nat. Rev. Microbiol. 2008, 6, 222.
doi: 10.1038/nrmicro1839
Hansen, J. S.; Elbing, K.; Thompson, J. R.; Malmstadt, N.; Lindkvist-Petersson, K. Chem. Commun. 2015, 51, 2316.
doi: 10.1039/C4CC08838G
Nordlund, G.; Brzezinski, P.; von Ballmoos, C. Nat. Commun. 2014, 5, 8.
Lee, K. Y.; Park, S. J.; Lee, K. A.; Kim, S. H.; Kim, H.; Meroz, Y.; Mahadevan, L.; Jung, K. H.; Ahn, T. K.; Parker, K. K.; Shin, K. Nat. Biotechnol. 2018, 36, 530.
doi: 10.1038/nbt.4140
Sokolova, E.; Spruijt, E.; Hansen, M. M. K.; Dubuc, E.; Groen, J.; Chokkalingam, V.; Piruska, A.; Heus, H. A.; Huck, W. T. S. Proc. Natl. Acad. Sci. 2013, 110, 11692.
doi: 10.1073/pnas.1222321110
Booth, R.; Qiao, Y.; Li, M.; Mann, S. Angew. Chem. Int. Ed. 2019, 3, 1.
Last, M. G. F.; Deshpande, S.; Dekker, C. ACS Nano 2020, 14, 4487.
doi: 10.1021/acsnano.9b10167
Sato, Y.; Takinoue, M. Micromachines 2019, 10, 216.
doi: 10.3390/mi10040216
Linsenmeier, M.; Kopp, M. R. G.; Grigolato, F.; Liu, D.; Zuercher, D.; Hondele, M.; Weis, K.; Palmiero, U. C.; Arosio, P. Angew. Chem. Int. Ed. 2019, 58, 14489.
doi: 10.1002/anie.201907278
Love, C.; Steinkuhler, J.; Gonzales, D. T.; Yandrapalli, N.; Robinson, T.; Dimova, R.; Tang, T. D. Angew. Chem. Int. Ed. 2020, 59, 5950.
doi: 10.1002/anie.201914893
Deshpande, S.; Brandenburg, F.; Lau, A.; Last, M. G. F.; Spoelstra, W. K.; Reese, L.; Wunnava, S.; Dogterom, M.; Dekker, C. Nat. Commun. 2019, 10, 1800.
doi: 10.1038/s41467-019-09855-x
Shin, Y.; Berry, J.; Pannucci, N.; Haataja, M. P.; Toettcher, J. E.; Brangwynne, C. P. Cell 2017, 168, 159.
doi: 10.1016/j.cell.2016.11.054
Yewdall, N. A.; Mason, A. F.; van Hest, J. C. M. Interface Focus 2018, 8, 15.
Zwicker, D.; Seyboldt, R.; Weber, C. A.; Hyman, A. A.; Jülicher, F. Nat. Phys. 2016, 13, 408.
Tang, T. Y. D.; van Swaay, D.; deMello, A.; Anderson, J. L. R.; Mann, S. Chem. Commun. 2015, 51, 11429.
doi: 10.1039/C5CC04220H
Deng, N.-N.; Vibhute, M. A.; Zheng, L.; Zhao, H.; Yelleswarapu, M.; Huck, W. T. S. J. Am. Chem. Soc. 2018, 140, 7399.
doi: 10.1021/jacs.8b03123
Krishna Kumar, R.; Yu, X.; Patil, A. J.; Li, M.; Mann, S. Angew. Chem. Int. Ed. 2011, 50, 9343.
doi: 10.1002/anie.201102628
Dzieciol, A. J.; Mann, S. Chem. Soc. Rev. 2012, 41, 79.
doi: 10.1039/C1CS15211D
Chatterjee, S.; Yadav, S. Life 2019, 9, 1.
Strulson, C. A.; Molden, R. C.; Keating, C. D.; Bevilacqua, P. C. Nat. Chem. 2012, 4, 941.
doi: 10.1038/nchem.1466
Drobot, B.; Iglesias-Artola, J. M.; Le Vay, K.; Mayr, V.; Kar, M.; Kreysing, M.; Mutschler, H.; Tang, T. D. Nat. Commun. 2018, 9, 3643.
doi: 10.1038/s41467-018-06072-w
Poudyal, R. R.; Guth-Metzler, R. M.; Veenis, A. J.; Frankel, E. A.; Keating, C. D.; Bevilacqua, P. C. Nat. Commun. 2019, 10, 490.
doi: 10.1038/s41467-019-08353-4
Tang, T. Y. D.; Antognozzi, M.; Vicary, J. A.; Perriman, A. W.; Mann, S. Soft Matter 2013, 9, 7647.
doi: 10.1039/c3sm50726b
Pir Cakmak, F.; Grigas, A. T.; Keating, C. D. Langmuir 2019, 35, 7830.
doi: 10.1021/acs.langmuir.9b00213
Martin, N.; Douliez, J. P. Angew. Chem. Int. Ed. 2017, 56, 13689.
doi: 10.1002/anie.201707139
Williams, D. S.; Patil, A. J.; Mann, S. Small 2014, 10, 1830.
doi: 10.1002/smll.201303654
Byun, C. K.; Hwang, H.; Choi, W. S.; Yaguchi, T.; Park, J.; Kim, D.; Mitchell, R. J.; Kim, T.; Cho, Y. K.; Takayama, S. J. Am. Chem. Soc. 2013, 135, 2242.
doi: 10.1021/ja3094923
Zhu, C. T.; Li, Q. C.; Dong, M. D.; Han, X. J. Anal. Chem. 2018, 90, 14363.
doi: 10.1021/acs.analchem.8b03825
Wang, X. J.; Tian, L. F.; Du, H.; Li, M.; Mu, W.; Drinkwater, B. W.; Han, X. J.; Mann, S. Chem. Sci. 2019, 10, 9446.
doi: 10.1039/C9SC04522H
Magdalena Estirado, E.; Mason, A. F.; Alemán García, M. Á.; van Hest, J. C. M.; Brunsveld, L. J. Am. Chem. Soc. 2020, 142, 9106.
doi: 10.1021/jacs.0c01732
Tian, L.; Martin, N.; Bassindale, P. G.; Patil, A. J.; Li, M.; Barnes, A.; Drinkwater, B. W.; Mann, S. Nat. Commun. 2016, 7, 13068.
doi: 10.1038/ncomms13068
Tian, L. F.; Li, M.; Liu, J. T.; Patil, A. J.; Drinkwater, B. W.; Mann, S. ACS Cent. Sci. 2018, 4, 1551.
doi: 10.1021/acscentsci.8b00555
Tian, L. F.; Li, M.; Patil, A. J.; Drinkwater, B. W.; Mann, S. Nat. Commun. 2019, 10, 13.
doi: 10.1038/s41467-018-07689-7
Martin, N.; Douliez, J. P.; Qiao, Y.; Booth, R.; Li, M.; Mann, S. Nat. Commun. 2018, 9, 3652.
doi: 10.1038/s41467-018-06087-3
Qiao, Y.; Li, M.; Qiu, D.; Mann, S. Angew. Chem. Int. Ed. 2019, 58, 17758.
doi: 10.1002/anie.201909313
Zhang, Y. W.; Liu, S. Y.; Yao, Y.; Chen, Y. F.; Zhou, S. H.; Yang, X. H.; Wang, K.; Liu, J. B. Small 2020, 16, 2002073.
doi: 10.1002/smll.202002073
Liu, J.; Tian, L.; Mann, S. Angew. Chem. Int. Ed. 2019, 59, 6853.
Zimmerman, S. B.; Harrison, B. Proc. Natl. Acad. Sci. 1987, 84, 1871.
doi: 10.1073/pnas.84.7.1871
Minton, A. P. J. Cell Sci. 2006, 119, 2863.
doi: 10.1242/jcs.03063
te Brinke, E.; Groen, J.; Herrmann, A.; Heus, H. A.; Rivas, G.; Spruijt, E.; Huck, W. T. S. Nat. Nanotechnol. 2018, 13, 849.
doi: 10.1038/s41565-018-0192-1
Zwicker, D.; Seyboldt, R.; Weber, C. A.; Hyman, A. A.; Julicher, F. Nat. Phys. 2017, 13, 408.
doi: 10.1038/nphys3984
Spoelstra, W. K.; van der Sluis, E. O.; Dogterom, M.; Reese, L. Langmuir 2020, 36, 1956.
doi: 10.1021/acs.langmuir.9b02719
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
Chengbin Gong , Guona Zhang , Qian Tang , Hong Lei , Ling Kong , Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Xiping Luo , Xing Wang , Shengxiang Yang , Jianzhong Guo , Yuxuan Wang , Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058
Lijun Huo , Mingcun Wang , Tianyi Zhao , Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059
Li Zhou , Dongyan Tang , Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
(a) Polycations and polyanions generate coacervates through electrostatic interaction; (b) phase diagram about the effect of concentration, pH, temperature and ionic strength on coacervates formation
(a) Phase diagram of (RGG-RGG) protein and salt concentration on coacervates formation[47]. Copyright 2018, Springer Nature. (b) Schematic illustration of the reversible assembly and disassembly of coacervates in liposomes with temperature changeing (top) and the corresponding fluorescence images (bottom) [48]. Copyright 2017, Wiley-VCH. (c) Brightfield micrographs of PGlu/Ply coacervates disassembly by lowering pH [50]. Copyright 2014, American Chemical Society.
(a) Schematic illustration of coacervates with one condensed phase[73]; (b) Schematic illustration of coacervates with two coexisting condensed phases[73]; (c) One condensed phase coacervates composed of PDDA and ATP; (d) Two coexisting condensed phases coacervates composed of poly glutamic acid (PGlu)/PAH inner core surrounded by a PGlu/PDDA shell[73]. Copyright 2020, American Chemical Society. https://pubs.acs.org/doi/abs/10.1021/jacs.9b11468
(a) Coacervates in vesicles prepared by using microfluidic technology: (a1) Schematic illustration of microfluidic technology, (a2) fluorescence image of (i) oil droplets and vesicles, (ii) coacervates, (iii) the overlap of (i) and (ii) [48]. Copyright 2017, Wiley-VCH. (b) Schematic illustration of the formation of coacervates in vesicles by using α-hemolysin pore (top) and time-lapse fluorescence images (bottom) [117]. Copyright 2019, Springer Nature. (c) Schematic showing that changing the pH to form coacervates reversibly in the vesicles (top) and the corresponding fluorescence images (bottom) [116]. Copyright 2020, Wiley-VCH. (d) Schematic of the formation of coacervates in proteinosomes (top) and fluorescence images: (i, ii) coacervates are adsorbed on the proteinosomes membrane, (iii, iv) coacervates are free in the proteinosomes [112]. Copyright 2019, Wiley-VCH. (e) Optically-regulated protein coacervates formed in a single yeast cell [99]. Copyright 2020, American Chemical Society.
(a) Catalytic cleavage of ribozymes on substrates: (a1) the sequence of hammerhead ribozyme, (a2) Wide-field optical microscopy images of coacervates (left). Fluorescence microscopy images at t=0 min (middle) and t=900 min (right) show an increase in FAM fluorescence (see inset) [127]. Copyright 2018, Springer Nature. (b) Optical microscopy images showing coacervates and recorded 1 h (left) and 16 h (right) after storage in the collection chamber. Insets shows corresponding fluorescence images of mCherry expression in single coacervate[121]. Copyright 2015, Royal Society of Chemistry. (c) Scheme showing the preparation of photosynthetically active membrane-free coacervates containing chloroplasts (top), Confocal fluorescence microscopy images showing coacervates after mixing with a dispersion of intact chloroplasts (bottom) [91]. Copyright 2018, Royal Society of Chemistry. (d) Schematic illustration of copolymer assembly on the surface of the coacervates to form a film (left) and fluorescence images (right): the inset is the schematic of a bespoke terpolymer[68, 69]. Copyright 2017, American Chemical Society. https://pubs.acs.org/doi/full/10.1021/jacs.7b10846. Copyright 2019, American Chemical Society. https://pubs.acs.org/doi/10.1021/acscentsci.9b00345. (e) Schematic illustration of the assembly of phospholipid vesicles on the surface of the coacervates or phospholipid vesicles destroy the coacervates (top) and fluorescence images: (i) the vesicles destroy the coacervates, (ii) the vesicles form a membrane on the surface of the coacervates [130]. Copyright 2019, American Chemical Society.
(a) Microscope images of coacervate-based artificial cells under different electric fields[87]. Copyright 2016, Springer Nature. (b) Acoustic patterning of coacervates micro-droplet arrays (left) and the fluorescence microscopy image of transferring of enzyme molecules in the array (right) [137]. Copyright 2018, Springer Nature. (c) Schematic showing synergistic and antagonistic behaviour in synthetic host-guest artificial cells[140]. Copyright 2016, Springer Nature.