Citation: Yan Lin, Ren Yongshuo, Wang Xuejing, Mu Wei, Han Xiaojun. Coacervate and Its Application in the Field of Artificial Cells[J]. Acta Chimica Sinica, ;2020, 78(11): 1150-1163. doi: 10.6023/A20060253 shu

Coacervate and Its Application in the Field of Artificial Cells

  • Corresponding author: Mu Wei, muwei@hit.edu.cn Han Xiaojun, hanxiaojun@hit.edu.cn
  • Received Date: 20 June 2020
    Available Online: 5 August 2020

    Fund Project: the National Natural Science Foundation of China 21773050the Natural Science Foundation of Heilongjiang Province for Distinguished Young Scholars JC2018003the National Natural Science Foundation of China 21929401Project supported by the National Natural Science Foundation of China (Nos. 21773050, 21929401) and the Natural Science Foundation of Heilongjiang Province for Distinguished Young Scholars (No. JC2018003)

Figures(6)

  • The origin of life attracts more and more attentions of researchers. Synthetic biologists are devoting to construct a simple and rational system which can exist in primitive earth. Coacervate is a phase separation system which is formed by the interactions of polyelectrolyte. It's a rational protocell model. So far, coacervate has been found to present as membraneless organelles in natural cells. Therefore, the construction of coacervate as artificial organelles is emerging. The formation mechanism, characteristics and categories of coacervate are reviewed in this paper. Additionally, the applications of coacervate as protocell and artificial organelles are summarized. The existing scientific problems and the future development directions are provided at the end of this paper.
  • 加载中
    1. [1]

      Nakashima, K. K.; Vibhute, M. A.; Spruijt, E. Front. Mol. Biosci. 2019, 6, 1.  doi: 10.3389/fmolb.2019.00001

    2. [2]

      Lau, H. K.; Paul, A.; Sidhu, I.; Li, L.; Sabanayagam, C. R.; Parekh, S. H.; Kiick, K. L. Adv. Sci. 2018, 5, 1701010.  doi: 10.1002/advs.201701010

    3. [3]

      Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Adv. Colloid Interface Sci. 2011, 167, 24.  doi: 10.1016/j.cis.2011.06.006

    4. [4]

      Bungenberg De Jong, H. G. Ned. Tijdschr. Geneeskd. 1952, 96, 1489.

    5. [5]

      Kerfeld, C. A.; Heinhorst, S.; Cannon, G. C. Annu. Rev. Microbiol. 2010, 64, 391.  doi: 10.1146/annurev.micro.112408.134211

    6. [6]

      Alberti, S. J. Cell Sci. 2017, 130, 2789.  doi: 10.1242/jcs.200295

    7. [7]

      Gabaldon, T.; Pittis, A. A. Biochimie 2015, 119, 262.  doi: 10.1016/j.biochi.2015.03.021

    8. [8]

      Heald, R.; Cohen-Fix, O. Curr. Opin. Cell Biol. 2014, 26, 79.  doi: 10.1016/j.ceb.2013.10.006

    9. [9]

      Sirri, V.; Urcuqui-Inchima, S.; Roussel, P.; Hernandez-Verdun, D. Histochem. Cell Biol. 2008, 129, 13.  doi: 10.1007/s00418-007-0359-6

    10. [10]

      Crowe, C. D.; Keating, C. D. Interface Focus 2018, 8, 20180032.  doi: 10.1098/rsfs.2018.0032

    11. [11]

      Aumiller, W. M., Jr.; Davis, B. W.; Keating, C. D. Int. Rev. Cell Mol. Biol. 2014, 307, 109.  doi: 10.1016/B978-0-12-800046-5.00005-9

    12. [12]

      Shin, Y.; Brangwynne, C. P. Science 2017, 357, eaaf4382.  doi: 10.1126/science.aaf4382

    13. [13]

      Banani, S. F.; Lee, H. O.; Hyman, A. A.; Rosen, M. K. Nat. Rev. Mol. Cell Biol. 2017, 18, 285.  doi: 10.1038/nrm.2017.7

    14. [14]

      Boisvert, F. M.; van Koningsbruggen, S.; Navascues, J.; Lamond, A. I. Nat. Rev. Mol. Cell Biol. 2007, 8, 574.

    15. [15]

      Gall, J. G. Nat. Rev. Mol. Cell Biol. 2003, 4, 975.  doi: 10.1038/nrm1262

    16. [16]

      Jain, S.; Wheeler, J. R.; Walters, R. W.; Agrawal, A.; Barsic, A.; Parker, R. Cell 2016, 164, 487.  doi: 10.1016/j.cell.2015.12.038

    17. [17]

      Brangwynne, C. P.; Eckmann, C. R.; Courson, D. S.; Rybarska, A.; Hoege, C.; Gharakhani, J.; Julicher, F.; Hyman, A. A. Science 2009, 324, 1729.  doi: 10.1126/science.1172046

    18. [18]

      Iwashita, K.; Handa, A.; Shiraki, K. Int. J. Biol. Macromol. 2018, 120, 10.  doi: 10.1016/j.ijbiomac.2018.08.063

    19. [19]

      Franzmann, T. M.; Jahnel, M.; Pozniakovsky, A.; Mahamid, J.; Holehouse, A. S.; Nuske, E.; Richter, D.; Baumeister, W.; Grill, S. W.; Pappu, R. V.; Hyman, A. A.; Alberti, S. Science 2018, 359, eaao5654.  doi: 10.1126/science.aao5654

    20. [20]

      Anderson, P.; Kedersha, N. Trends Biochem. Sci. 2008, 33, 141.  doi: 10.1016/j.tibs.2007.12.003

    21. [21]

      French, J. B.; Jones, S. A.; Deng, H. Y.; Pedley, A. M.; Kim, D.; Chan, C. Y.; Hu, H. B.; Pugh, R. J.; Zhao, H.; Zhang, Y. X.; Huang, T. J.; Fang, Y.; Zhuang, X. W.; Benkovic, S. J. Science 2016, 351, 733.  doi: 10.1126/science.aac6054

    22. [22]

      Alberti, S.; Gladfelter, A.; Mittag, T. Cell 2019, 176, 419.  doi: 10.1016/j.cell.2018.12.035

    23. [23]

      Lentini, R.; Yeh Martin, N.; Mansy, S. S. Curr. Opin. Chem. Biol. 2016, 34, 53.  doi: 10.1016/j.cbpa.2016.06.013

    24. [24]

      Aufinger, L.; Simmel, F. C. Chem. Eur. J. 2019, 25, 12659.  doi: 10.1002/chem.201901726

    25. [25]

      Engelhart, A. E.; Adamala, K. P.; Szostak, J. W. Nat. Chem. 2016, 8, 448.  doi: 10.1038/nchem.2475

    26. [26]

      Budin, I.; Debnath, A.; Szostak, J. W. J. Am. Chem. Soc. 2012, 134, 20812.  doi: 10.1021/ja310382d

    27. [27]

      Zong, W.; Ma, S. H.; Zhang, X. N.; Wang, X. J.; Li, Q. C.; Han, X. J. J. Am. Chem. Soc. 2017, 139, 9955.  doi: 10.1021/jacs.7b04009

    28. [28]

      Zong, W.; Zhang, X. N.; Li, C.; Han, X. J. ACS Synth. Biol. 2018, 7, 945.  doi: 10.1021/acssynbio.8b00045

    29. [29]

      Li, S. B.; Wang, X. J.; Mu, W.; Han, X. J. Anal. Chem. 2019, 91, 6859.

    30. [30]

      Kamiya, K.; Takeuchi, S. J. Mat. Chem. B 2017, 5, 5911.  doi: 10.1039/C7TB01322A

    31. [31]

      Dupin, A.; Simmel, F. C. Nat. Chem. 2019, 11, 32.  doi: 10.1038/s41557-018-0174-9

    32. [32]

      van Swaay, D.; deMello, A. Lab Chip 2013, 13, 752.  doi: 10.1039/c2lc41121k

    33. [33]

      Li, Q. C.; Wang, X. J.; Ma, S. H.; Zhang, Y.; Han, X. J. Colloids Surf. B-Biointerfaces 2016, 147, 368.  doi: 10.1016/j.colsurfb.2016.08.018

    34. [34]

      Tian, W.; Sasaki, Y.; Ikeda, A.; Kikuchi, J.; Song, X.; Fan, S. Acta Chim. Sinica 2004, 62, 1230(in Chinese).
       

    35. [35]

      Li, L.; Lin, M.; Qiu, F.; Yang, Y. Acta Chim. Sinica 2005, 63, 1375(in Chinese).
       

    36. [36]

      Meng, F. H.; Zhong, Z. Y. J. Phys. Chem. Lett. 2011, 2, 1533.  doi: 10.1021/jz200007h

    37. [37]

      LoPresti, C.; Lomas, H.; Massignani, M.; Smart, T.; Battaglia, G. J. Mater. Chem. 2009, 19, 3576.  doi: 10.1039/b818869f

    38. [38]

      Oparin, A. I. Origin of Life, Dover Publications, New York, 1953.

    39. [39]

      Poudyal, R. R.; Pir Cakmak, F.; Keating, C. D.; Bevilacqua, P. C. Biochemistry 2018, 57, 2509.  doi: 10.1021/acs.biochem.8b00081

    40. [40]

      Overbeek, J. T.; Voorn, M. J. J. Cell. Physiol. 1957, 49, 7.  doi: 10.1002/jcp.1030490404

    41. [41]

      Kim, S.; Huang, J.; Lee, Y.; Dutta, S.; Yoo, H. Y.; Jung, Y. M.; Jho, Y.; Zeng, H.; Hwang, D. S. Proc. Natl. Acad. Sci. 2016, 113, E847.  doi: 10.1073/pnas.1521521113

    42. [42]

      Hoffmann, K. Q.; Perry, S. L.; Leon, L.; Priftis, D.; Tirrell, M.; de Pablo, J. J. Soft Matter 2015, 11, 1525.  doi: 10.1039/C4SM02336F

    43. [43]

      Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. Chem. Soc. Rev. 2013, 42, 7214.  doi: 10.1039/c3cs35499g

    44. [44]

      Blocher, W. C.; Perry, S. L. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol. 2017, 9, e1442.  doi: 10.1002/wnan.1442

    45. [45]

      Priftis, D.; Xia, X.; Margossian, K. O.; Perry, S. L.; Leon, L.; Qin, J.; de Pablo, J. J.; Tirrell, M. Macromolecules 2014, 47, 3076.  doi: 10.1021/ma500245j

    46. [46]

      Jeon, B. J.; Nguyen, D. T.; Abraham, G. R.; Conrad, N.; Fygenson, D. K.; Saleh, O. A. Soft Matter 2018, 14, 7009.  doi: 10.1039/C8SM01085D

    47. [47]

      Schuster, B. S.; Reed, E. H.; Parthasarathy, R.; Jahnke, C. N.; Caldwell, R. M.; Bermudez, J. G.; Ramage, H.; Good, M. C.; Hammer, D. A. Nat. Commun. 2018, 9, 12.  doi: 10.1038/s41467-017-02416-0

    48. [48]

      Deng, N.-N.; Huck W. T. S. Angew. Chem. Int. Ed. 2017, 56, 9736.  doi: 10.1002/anie.201703145

    49. [49]

      Koga, S.; Williams, D. S.; Perriman, A. W.; Mann, S. Nat. Chem. 2011, 3, 720.  doi: 10.1038/nchem.1110

    50. [50]

      Black, K. A.; Priftis, D.; Perry, S. L.; Yip, J.; Byun, W. Y.; Tirrell, M. ACS Macro Lett. 2014, 3, 1088.  doi: 10.1021/mz500529v

    51. [51]

      Aumiller, W. M., Jr.; Keating, C. D. Nat. Chem. 2016, 8, 129.  doi: 10.1038/nchem.2414

    52. [52]

      Spruijt, E.; Sprakel, J.; Stuart, M. A. C.; van der Gucht, J. Soft Matter 2010, 6, 172.  doi: 10.1039/B911541B

    53. [53]

      Frankel, E. A.; Bevilacqua, P. C.; Keating, C. D. Langmuir 2016, 32, 2041.  doi: 10.1021/acs.langmuir.5b04462

    54. [54]

      Zhao, M. M.; Zacharia, N. S. J. Chem. Phys. 2018, 149, 163326.  doi: 10.1063/1.5040346

    55. [55]

      Lindhoud, S.; Claessens, M. M. A. E. Soft Matter 2016, 12, 408.  doi: 10.1039/C5SM02386F

    56. [56]

      Obermeyer, A. C.; Mills, C. E.; Dong, X. H.; Flores, R. J.; Olsen, B. D. Soft Matter 2016, 12, 3570.  doi: 10.1039/C6SM00002A

    57. [57]

      Kapelner, R. A.; Obermeyer, A. C. Chem. Sci. 2019, 10, 2700.  doi: 10.1039/C8SC04253E

    58. [58]

      Cummings, C. S.; Obermeyer, A. C. Biochemistry 2018, 57, 314.  doi: 10.1021/acs.biochem.7b00990

    59. [59]

      Horn, J. M.; Kapelner, R. A.; Obermeyer, A. C. Polymers 2019, 11, 578.  doi: 10.3390/polym11040578

    60. [60]

      Pathak, J.; Rawat, K. RSC Adv. 2015, 5, 67066.  doi: 10.1039/C5RA07195J

    61. [61]

      Pathak, J.; Rawat, K. J. Phys. Chem. B 2014, 118, 11161.  doi: 10.1021/jp5068846

    62. [62]

      Perry, S. L.; Leon, L.; Hoffmann, K. Q.; Kade, M. J.; Priftis, D.; Black, K. A.; Wong, D.; Klein, R. A.; Pierce, C. F.; Margossian, K. O.; Whitmer, J. K.; Qin, J.; de Pablo, J. J.; Tirrell, M. Nat. Commun. 2015, 6, 8.

    63. [63]

      Aumiller, W. M., Jr.; Keating, C. D. Adv. Colloid Interface Sci. 2017, 239, 75.  doi: 10.1016/j.cis.2016.06.011

    64. [64]

      Souza, C. J. F.; da Costa, A. R.; Souza, C. F.; Tosin, F. F. S.; Garcia-Rojas, E. E. Int. J. Biol. Macromol. 2018, 107, 1253.  doi: 10.1016/j.ijbiomac.2017.09.104

    65. [65]

      Souza, C. J. F.; Garcia-Rojas, E. E. Food Hydrocoll. 2015, 47, 124.  doi: 10.1016/j.foodhyd.2015.01.010

    66. [66]

      Hwang, D. S.; Zeng, H. B.; Srivastava, A.; Krogstad, D. V.; Tirrell, M.; Israelachvili, J. N.; Waite, J. H. Soft Matter 2010, 6, 3232.  doi: 10.1039/c002632h

    67. [67]

      Zhang, X. M.; Lin, Y. X.; Eschmann, N. A.; Zhou, H. J.; Rauch, J. N.; Hernandez, I.; Guzman, E.; Kosik, K. S.; Han, S. I. PLoS Biol. 2017, 15, 28.

    68. [68]

      Mason, A. F.; Buddingh, B. C.; Williams, D. S.; van Hest, J. C. M. J. Am. Chem. Soc. 2017, 139, 17309.  doi: 10.1021/jacs.7b10846

    69. [69]

      Mason, A. F.; Yewdall, N. A.; Welzen, P. L. W.; Shao, J.; van Stevendaal, M.; van Hest, J. C. M.; Williams, D. S.; Abdelmohsen, L. ACS Cent. Sci. 2019, 5, 1360.  doi: 10.1021/acscentsci.9b00345

    70. [70]

      Qiao, Y.; Li, M.; Booth, R.; Mann, S. Nat. Chem. 2017, 9, 110.  doi: 10.1038/nchem.2617

    71. [71]

      Dora Tang, T. Y.; Rohaida Che Hak, C.; Thompson, A. J.; Kuimova, M. K.; Williams, D. S.; Perriman, A. W.; Mann, S. Nat. Chem. 2014, 6, 527.  doi: 10.1038/nchem.1921

    72. [72]

      Priftis, D.; Farina, R.; Tirrell, M. Langmuir 2012, 28, 8721.  doi: 10.1021/la300769d

    73. [73]

      Lu, T.; Spruijt, E. J. Am. Chem. Soc. 2020, 142, 2905.  doi: 10.1021/jacs.9b11468

    74. [74]

      Ulijn, R. V.; Lampel, A. Isr. J. Chem. 2019, 1.

    75. [75]

      Choi, J.-M.; Wang, J.; Holehouse, A. S.; Alberti, S.; Hyman, A. A.; Pappu, R. V. Biophys. J. 2018, 114, 561A.

    76. [76]

      Wei, M.-T.; Elbaum-Garfinkle, S.; Holehouse, A. S.; Chen, C. C.-H.; Feric, M.; Arnold, C. B.; Priestley, R. D.; Pappu, R. V.; Brangwynne, C. P. Nat. Chem. 2017, 9, 1118.  doi: 10.1038/nchem.2803

    77. [77]

      Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biochem. 2014, 83, 553.  doi: 10.1146/annurev-biochem-072711-164947

    78. [78]

      Cohan, M. C.; Posey, A. E.; Mittal, A.; Grigsby, S. J.; Holehouse, A. S.; Buske, P. J.; Levin, P. A.; Pappu, R. V. Mol. Biol. Cell 2017, 114, 590A.

    79. [79]

      Harmon, T. S.; Holehouse, A. S.; Pappu, R. V. New J. Phys. 2018, 20, 045002.  doi: 10.1088/1367-2630/aab8d9

    80. [80]

      Ruff, K. M.; Pappu, R. V.; Holehouse, A. S. Curr. Opin. Struct. Biol. 2019, 56, 1.

    81. [81]

      Molliex, A.; Temirov, J.; Lee, J.; Coughlin, M.; Kanagaraj, A. P.; Kim, H. J.; Mittag, T.; Taylor, J. P. Cell 2015, 163, 123.  doi: 10.1016/j.cell.2015.09.015

    82. [82]

      Elbaum-Garfinkle, S.; Kim, Y.; Szczepaniak, K.; Chen, C. C. H.; Eckmann, C. R.; Myong, S.; Brangwynne, C. P. Proc. Natl. Acad. Sci. 2015, 112, 7189.  doi: 10.1073/pnas.1504822112

    83. [83]

      Tan, Y. P.; Hoon, S.; Guerette, P. A.; Wei, W.; Ghadban, A.; Hao, C.; Miserez, A.; Waite, J. H. Nat. Chem. Biol. 2015, 11, 488.  doi: 10.1038/nchembio.1833

    84. [84]

      Madinya, J. J.; Chang, L. W.; Perry, S. L.; Sing, C. E. Mol. Syst. Des. Eng. 2020, 5, 632.  doi: 10.1039/C9ME00074G

    85. [85]

      Mountain, G. A.; Keating, C. D. Biomacromolecules 2020, 21, 630.  doi: 10.1021/acs.biomac.9b01354

    86. [86]

      Jing, H.; Bai, Q.; Lin, Y. n.; Chang, H.; Yin, D.; Liang, D. Langmuir 2020, 36, 8017.  doi: 10.1021/acs.langmuir.0c01864

    87. [87]

      Yin, Y. D.; Niu, L.; Zhu, X. C.; Zhao, M. P.; Zhang, Z. X.; Mann, S.; Liang, D. H. Nat. Commun. 2016, 7, 7.

    88. [88]

      Yin, Y. D.; Chang, H. J.; Jing, H. R.; Zhang, Z. X.; Yan, D. D.; Mann, S.; Liang, D. H. Soft Matter 2018, 14, 6514.  doi: 10.1039/C8SM01168K

    89. [89]

      Fothergill, J.; Li, M.; Davis, S. A.; Cunningham, J. A.; Mann, S. Langmuir 2014, 30, 14591.  doi: 10.1021/la503746u

    90. [90]

      Dompe, M.; Cedano-Serrano, F. J.; Heckert, O.; van den Heuvel, N.; van der Gucht, J.; Tran, Y.; Hourdet, D.; Creton, C.; Kamperman, M. Adv. Mater. 2019, 31, e1808179.  doi: 10.1002/adma.201808179

    91. [91]

      Kumar, B.; Fothergill, J.; Bretherton, J.; Tian, L. F.; Patil, A. J.; Davis, S. A.; Mann, S. Chem. Commun. 2018, 54, 3594.  doi: 10.1039/C8CC01129J

    92. [92]

      Lawrence, M. S.; Phillips, K. J.; Liu, D. R. J. Am. Chem. Soc. 2007, 129, 10110.  doi: 10.1021/ja071641y

    93. [93]

      Comert, F.; Malanowski, A. J.; Azarikia, F.; Dubin, P. L. Soft Matter 2016, 12, 4154.  doi: 10.1039/C6SM00044D

    94. [94]

      Comert, F.; Xu, A. Y.; Madro, S. P.; Liadinskaia, V.; Dubin, P. L. J. Chem. Phys. 2018, 149, 163321.  doi: 10.1063/1.5029296

    95. [95]

      Xu, A. Y.; Melton, L. D.; Ryan, T. M.; Mata, J. P.; Rekas, A.; Williams, M. A. K.; McGillivray, D. J. Food Hydrocoll. 2018, 77, 952.  doi: 10.1016/j.foodhyd.2017.11.045

    96. [96]

      Pandey, P. K.; Kaushik, P.; Rawat, K.; Aswal, V. K.; Bohidar, H. B. Soft Matter 2017, 13, 6784.  doi: 10.1039/C7SM01222E

    97. [97]

      Lin, Y.; Jing, H.; Liu, Z.; Chen, J.; Liang, D. Langmuir 2020, 36, 1709.  doi: 10.1021/acs.langmuir.9b03561

    98. [98]

      Simon, J. R.; Carroll, N. J.; Rubinstein, M.; Chilkoti, A.; Lopez, G. P. Nat. Chem. 2017, 9, 509.  doi: 10.1038/nchem.2715

    99. [99]

      Reed, E. H.; Schuster, B. S. ACS Synth. Biol. 2020, 9, 500.  doi: 10.1021/acssynbio.9b00503

    100. [100]

      Shin, Y.; Berry, J.; Pannucci, N.; Haataja, M. P.; Toettcher, J. E.; Brangwynne, C. P. Cell 2017, 168, 159.  doi: 10.1016/j.cell.2016.11.054

    101. [101]

      Mitrea, D. M.; Kriwacki, R. W. Cell Commun. Signaling 2016, 14, R1097.

    102. [102]

      Bayley, H.; Mason, A. F.; van Hest, J. C. M. Emerging Top. Life Sci. 2019, 3, 567.  doi: 10.1042/ETLS20190094

    103. [103]

      Ghellab, S. E.; Li, Q. C.; Fuhs, T.; Bi, H. M.; Han, X. J. Colloid Surf. B-Biointerfaces 2017, 160, 697.  doi: 10.1016/j.colsurfb.2017.10.025

    104. [104]

      Spoelstra, W. K.; Deshpande, S.; Dekker, C. Curr. Opin. Biotechnol. 2018, 51, 47.  doi: 10.1016/j.copbio.2017.11.005

    105. [105]

      Blain, J. C.; Szostak, J. W. Annu. Rev. Biochem. 2014, 83, 615.  doi: 10.1146/annurev-biochem-080411-124036

    106. [106]

      Vance, J. E. Traffic 2015, 16, 1.  doi: 10.1111/tra.12230

    107. [107]

      Zhang, Y. M.; Rock, C. O. Nat. Rev. Microbiol. 2008, 6, 222.  doi: 10.1038/nrmicro1839

    108. [108]

      Hansen, J. S.; Elbing, K.; Thompson, J. R.; Malmstadt, N.; Lindkvist-Petersson, K. Chem. Commun. 2015, 51, 2316.  doi: 10.1039/C4CC08838G

    109. [109]

      Nordlund, G.; Brzezinski, P.; von Ballmoos, C. Nat. Commun. 2014, 5, 8.

    110. [110]

      Lee, K. Y.; Park, S. J.; Lee, K. A.; Kim, S. H.; Kim, H.; Meroz, Y.; Mahadevan, L.; Jung, K. H.; Ahn, T. K.; Parker, K. K.; Shin, K. Nat. Biotechnol. 2018, 36, 530.  doi: 10.1038/nbt.4140

    111. [111]

      Sokolova, E.; Spruijt, E.; Hansen, M. M. K.; Dubuc, E.; Groen, J.; Chokkalingam, V.; Piruska, A.; Heus, H. A.; Huck, W. T. S. Proc. Natl. Acad. Sci. 2013, 110, 11692.  doi: 10.1073/pnas.1222321110

    112. [112]

      Booth, R.; Qiao, Y.; Li, M.; Mann, S. Angew. Chem. Int. Ed. 2019, 3, 1.

    113. [113]

      Last, M. G. F.; Deshpande, S.; Dekker, C. ACS Nano 2020, 14, 4487.  doi: 10.1021/acsnano.9b10167

    114. [114]

      Sato, Y.; Takinoue, M. Micromachines 2019, 10, 216.  doi: 10.3390/mi10040216

    115. [115]

      Linsenmeier, M.; Kopp, M. R. G.; Grigolato, F.; Liu, D.; Zuercher, D.; Hondele, M.; Weis, K.; Palmiero, U. C.; Arosio, P. Angew. Chem. Int. Ed. 2019, 58, 14489.  doi: 10.1002/anie.201907278

    116. [116]

      Love, C.; Steinkuhler, J.; Gonzales, D. T.; Yandrapalli, N.; Robinson, T.; Dimova, R.; Tang, T. D. Angew. Chem. Int. Ed. 2020, 59, 5950.  doi: 10.1002/anie.201914893

    117. [117]

      Deshpande, S.; Brandenburg, F.; Lau, A.; Last, M. G. F.; Spoelstra, W. K.; Reese, L.; Wunnava, S.; Dogterom, M.; Dekker, C. Nat. Commun. 2019, 10, 1800.  doi: 10.1038/s41467-019-09855-x

    118. [118]

      Shin, Y.; Berry, J.; Pannucci, N.; Haataja, M. P.; Toettcher, J. E.; Brangwynne, C. P. Cell 2017, 168, 159.  doi: 10.1016/j.cell.2016.11.054

    119. [119]

      Yewdall, N. A.; Mason, A. F.; van Hest, J. C. M. Interface Focus 2018, 8, 15.

    120. [120]

      Zwicker, D.; Seyboldt, R.; Weber, C. A.; Hyman, A. A.; Jülicher, F. Nat. Phys. 2016, 13, 408.

    121. [121]

      Tang, T. Y. D.; van Swaay, D.; deMello, A.; Anderson, J. L. R.; Mann, S. Chem. Commun. 2015, 51, 11429.  doi: 10.1039/C5CC04220H

    122. [122]

      Deng, N.-N.; Vibhute, M. A.; Zheng, L.; Zhao, H.; Yelleswarapu, M.; Huck, W. T. S. J. Am. Chem. Soc. 2018, 140, 7399.  doi: 10.1021/jacs.8b03123

    123. [123]

      Krishna Kumar, R.; Yu, X.; Patil, A. J.; Li, M.; Mann, S. Angew. Chem. Int. Ed. 2011, 50, 9343.  doi: 10.1002/anie.201102628

    124. [124]

      Dzieciol, A. J.; Mann, S. Chem. Soc. Rev. 2012, 41, 79.  doi: 10.1039/C1CS15211D

    125. [125]

      Chatterjee, S.; Yadav, S. Life 2019, 9, 1.

    126. [126]

      Strulson, C. A.; Molden, R. C.; Keating, C. D.; Bevilacqua, P. C. Nat. Chem. 2012, 4, 941.  doi: 10.1038/nchem.1466

    127. [127]

      Drobot, B.; Iglesias-Artola, J. M.; Le Vay, K.; Mayr, V.; Kar, M.; Kreysing, M.; Mutschler, H.; Tang, T. D. Nat. Commun. 2018, 9, 3643.  doi: 10.1038/s41467-018-06072-w

    128. [128]

      Poudyal, R. R.; Guth-Metzler, R. M.; Veenis, A. J.; Frankel, E. A.; Keating, C. D.; Bevilacqua, P. C. Nat. Commun. 2019, 10, 490.  doi: 10.1038/s41467-019-08353-4

    129. [129]

      Tang, T. Y. D.; Antognozzi, M.; Vicary, J. A.; Perriman, A. W.; Mann, S. Soft Matter 2013, 9, 7647.  doi: 10.1039/c3sm50726b

    130. [130]

      Pir Cakmak, F.; Grigas, A. T.; Keating, C. D. Langmuir 2019, 35, 7830.  doi: 10.1021/acs.langmuir.9b00213

    131. [131]

      Martin, N.; Douliez, J. P. Angew. Chem. Int. Ed. 2017, 56, 13689.  doi: 10.1002/anie.201707139

    132. [132]

      Williams, D. S.; Patil, A. J.; Mann, S. Small 2014, 10, 1830.  doi: 10.1002/smll.201303654

    133. [133]

      Byun, C. K.; Hwang, H.; Choi, W. S.; Yaguchi, T.; Park, J.; Kim, D.; Mitchell, R. J.; Kim, T.; Cho, Y. K.; Takayama, S. J. Am. Chem. Soc. 2013, 135, 2242.  doi: 10.1021/ja3094923

    134. [134]

      Zhu, C. T.; Li, Q. C.; Dong, M. D.; Han, X. J. Anal. Chem. 2018, 90, 14363.  doi: 10.1021/acs.analchem.8b03825

    135. [135]

      Wang, X. J.; Tian, L. F.; Du, H.; Li, M.; Mu, W.; Drinkwater, B. W.; Han, X. J.; Mann, S. Chem. Sci. 2019, 10, 9446.  doi: 10.1039/C9SC04522H

    136. [136]

      Magdalena Estirado, E.; Mason, A. F.; Alemán García, M. Á.; van Hest, J. C. M.; Brunsveld, L. J. Am. Chem. Soc. 2020, 142, 9106.  doi: 10.1021/jacs.0c01732

    137. [137]

      Tian, L.; Martin, N.; Bassindale, P. G.; Patil, A. J.; Li, M.; Barnes, A.; Drinkwater, B. W.; Mann, S. Nat. Commun. 2016, 7, 13068.  doi: 10.1038/ncomms13068

    138. [138]

      Tian, L. F.; Li, M.; Liu, J. T.; Patil, A. J.; Drinkwater, B. W.; Mann, S. ACS Cent. Sci. 2018, 4, 1551.  doi: 10.1021/acscentsci.8b00555

    139. [139]

      Tian, L. F.; Li, M.; Patil, A. J.; Drinkwater, B. W.; Mann, S. Nat. Commun. 2019, 10, 13.  doi: 10.1038/s41467-018-07689-7

    140. [140]

      Martin, N.; Douliez, J. P.; Qiao, Y.; Booth, R.; Li, M.; Mann, S. Nat. Commun. 2018, 9, 3652.  doi: 10.1038/s41467-018-06087-3

    141. [141]

      Qiao, Y.; Li, M.; Qiu, D.; Mann, S. Angew. Chem. Int. Ed. 2019, 58, 17758.  doi: 10.1002/anie.201909313

    142. [142]

      Zhang, Y. W.; Liu, S. Y.; Yao, Y.; Chen, Y. F.; Zhou, S. H.; Yang, X. H.; Wang, K.; Liu, J. B. Small 2020, 16, 2002073.  doi: 10.1002/smll.202002073

    143. [143]

      Liu, J.; Tian, L.; Mann, S. Angew. Chem. Int. Ed. 2019, 59, 6853.

    144. [144]

      Zimmerman, S. B.; Harrison, B. Proc. Natl. Acad. Sci. 1987, 84, 1871.  doi: 10.1073/pnas.84.7.1871

    145. [145]

      Minton, A. P. J. Cell Sci. 2006, 119, 2863.  doi: 10.1242/jcs.03063

    146. [146]

      te Brinke, E.; Groen, J.; Herrmann, A.; Heus, H. A.; Rivas, G.; Spruijt, E.; Huck, W. T. S. Nat. Nanotechnol. 2018, 13, 849.  doi: 10.1038/s41565-018-0192-1

    147. [147]

      Zwicker, D.; Seyboldt, R.; Weber, C. A.; Hyman, A. A.; Julicher, F. Nat. Phys. 2017, 13, 408.  doi: 10.1038/nphys3984

    148. [148]

      Spoelstra, W. K.; van der Sluis, E. O.; Dogterom, M.; Reese, L. Langmuir 2020, 36, 1956.  doi: 10.1021/acs.langmuir.9b02719

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(80)
  • Abstract views(3336)
  • HTML views(996)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return