Citation: Jia Yiyi, Wang Wenjie, Liang Ling, Yuan Quan. Bioassay Applications of Aptamer-Functionalized Rare Earth Nanomaterials[J]. Acta Chimica Sinica, ;2020, 78(11): 1177-1184. doi: 10.6023/A20060252 shu

Bioassay Applications of Aptamer-Functionalized Rare Earth Nanomaterials

  • Corresponding author: Yuan Quan, yuanquan@whu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 19 June 2020
    Available Online: 27 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21904037), Natural Science Foundation of Hunan Province, China (Nos. 2020JJ4173, 2020JJ5038) and Changsha Municipal Science and Technology Projects, China (No. Kq1901030)Natural Science Foundation of Hunan Province, China 2020JJ4173Changsha Municipal Science and Technology Projects, China Kq1901030the National Natural Science Foundation of China 21904037Natural Science Foundation of Hunan Province, China 2020JJ5038

Figures(7)

  • The levels of some biomolecules and ions in the body are usually related to the structural and functional changes of cells, tissues, organs, etc., which directly affect the prevention, diagnosis, and treatment of diseases. Therefore, in vivo bioassays of these substances are of great significance in medical and healthcare fields. The nano fluorescent probes consisted of rare earth nano materials have advantages of high sensitivity, simplicity, efficiency, and strong anti-interference ability, thus showing great potential in bioassays. The functionalization of aptamers on rare earth nanomaterials can further provide better specific recognition ability and biocompatibility for nano fluorescent probes, thereby enhancing their bioassays ability in complex samples. In this paper, the research progress of aptamer-functionalized rare earth nanomaterials as nano fluorescent probes in the field of bioassays is reviewed, and the main types, properties, detection mechanisms and detection substances are briefly introduced.
  • 加载中
    1. [1]

      Pehlivan, Z. S.; Torabfam, M.; Kurt, H.; Ow-Yang, C.; Hildebrandt, N.; Yüce, M. Microchim. Acta 2019, 186, 563.  doi: 10.1007/s00604-019-3659-3

    2. [2]

      Escudero, A.; Becerro, A. I.; Carrillo-Carrión, C.; Núñez, N. O.; Zyuzin, M. V.; Laguna, M.; González-Mancebo, D.; Ocaña, M.; Parak, W. J. Nanophotonics 2017, 6, 881.  doi: 10.1515/nanoph-2017-0007

    3. [3]

    4. [4]

      Kuningas, K.; Ukonaho, T.; Päkkilä, H.; Rantanen, T.; Rosenberg, J.; Lövgren, T.; Soukka, T. Anal. Chem. 2006, 78, 4690.  doi: 10.1021/ac0603983

    5. [5]

      Ma, L.; Liu, F. Y.; Lei, Z.; Wang, Z. X. Biosens. Bioelectron. 2017, 87, 638.  doi: 10.1016/j.bios.2016.09.017

    6. [6]

      Saleh, S. M.; Ali, R.; Hirsch, T.; Wolfbeis, O. S. J. Nanopart. Res. 2011, 13, 4603.  doi: 10.1007/s11051-011-0424-x

    7. [7]

      Wang, Y. H.; Shen, P.; Li, C. Y.; Wang, Y.; Liu, Z. Y. Anal. Chem. 2012, 84, 1466.  doi: 10.1021/ac202627b

    8. [8]

      Tuerk, C.; Gold, L. Science 1990, 249, 505.  doi: 10.1126/science.2200121

    9. [9]

      Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818.  doi: 10.1038/346818a0

    10. [10]

      Yüce, M.; Ullah, N.; Budak, H. Analyst 2015, 140, 5379.  doi: 10.1039/C5AN00954E

    11. [11]

      Tu, J. W.; Gan, Y.; Liang, T.; Wang, Q.; Ren, T. L.; Sun, Q. Y.; Wan, H.; Wang, P. Front. Chem. 2018, 6, 333.  doi: 10.3389/fchem.2018.00333

    12. [12]

      Qu, F.; Sun, C.; Lv, X. X.; You, J. M. Microchim. Acta 2018, 185, 359.  doi: 10.1007/s00604-018-2888-1

    13. [13]

      Hao, T. T.; Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Kuang, H.; Xu, C. Small 2017, 13, 1603944.  doi: 10.1002/smll.201603944

    14. [14]

      Afzalinia, A.; Mirzaee, M. ACS Appl. Mater. Interfaces 2020, 12, 16076.  doi: 10.1021/acsami.0c00891

    15. [15]

      Bashmakova, E. E.; Krasitskaya, V. V.; Zamay, G. S.; Zamay, T. N.; Frank, L. A. Talanta 2019, 199, 674.  doi: 10.1016/j.talanta.2019.03.030

    16. [16]

      Jin, B.; Wang, S.; Lin, M.; Jin, Y.; Zhang, S.; Cui, X.; Gong, Y.; Li, A.; Xu, F.; Lu, T. J. Biosens. Bioelectron. 2017, 90, 525.  doi: 10.1016/j.bios.2016.10.029

    17. [17]

      Kong, R. M.; Zhang, X. B.; Chen, Z.; Tan, W. Small 2011, 7, 2428.

    18. [18]

      Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Analyst 2010, 135, 1839.  doi: 10.1039/c0an00144a

    19. [19]

      (a) Ang, L. Y.; Lim, M. E.; Ong, L. C.; Zhang, Y. Nanomedicine 2011, 6, 1273; (b) Chen, J.; Zhao, J. X. Sensors 2012, 12, 2414.

    20. [20]

      (a) Heer, S.; Lehmann, O.; Haase, M.; Güdel, H. U. Angew. Chem., Int. Ed. 2003, 42, 3179; (b) Lin, M.; Zhao, Y.; Wang, S. Q.; Liu, M.; Duan, Z. F.; Chen, Y. M.; Li, F.; Xu, F.; Lu, T. J. Biotechnol. Adv. 2012, 30, 1551; (c) DaCosta, M. V.; Doughan, S.; Han, Y.; Krull, U. J. Anal. Chim. Acta 2014, 832, 1.

    21. [21]

      Chivian, J. S.; Case, W. E.; Eden, D. D. Appl. Phys. Lett. 1979, 35, 124.  doi: 10.1063/1.91044

    22. [22]

      Hong, E.; Liu, L. M.; Bai, L. M.; Xia, C. H.; Gao, L.; Zhang, L. W.; Wang, B. Q. Mater. Sci. Eng., C 2019, 105, 110097.  doi: 10.1016/j.msec.2019.110097

    23. [23]

      Auzel, F. Chem. Rev. 2004, 104, 139.  doi: 10.1021/cr020357g

    24. [24]

      Yao, C. Z.; Yao, C. Z.; Tong, Y. X. TrAC, Trends Anal. Chem. 2012, 39, 60.  doi: 10.1016/j.trac.2012.07.007

    25. [25]

      Lingeshwar Reddy, K.; Balaji, R.; Kumar, A.; Krishnan, V. Small 2018, 14, 1801304.  doi: 10.1002/smll.201801304

    26. [26]

      Lin, Q. S.; Li, Z. H.; Yuan, Q. Chin. Chem. Lett. 2019, 30, 1547.  doi: 10.1016/j.cclet.2019.06.016

    27. [27]

      (a) Liu, Y. L.; Kuang, J. Y.; Lei, B. F.; Shi, C. S. J. Mater. Chem. 2005, 15, 4025; (b) Pan, Z. W.; Lu, Y. Y.; Liu, F. Nat. Mater. 2011, 11, 58; (c) Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. Nat. Mater. 2014, 13, 418.

    28. [28]

      Matsuzawa, T.; Aoki, Y.; Takeuchi, N. J. Electrochem. Soc. 1996, 143, 2670.  doi: 10.1149/1.1837067

    29. [29]

      le Masne de Chermont, Q.; Chaneac, C.; Seguin, J.; Pelle, F.; Maitrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Proc. Nat. Acad. Sci. 2007, 104, 9266.  doi: 10.1073/pnas.0702427104

    30. [30]

      Tu, T. Z.; Jiang, G. J. J. Mater. Sci.:Mater. Electron. 2018, 29, 3146.  doi: 10.1007/s10854-017-8247-x

    31. [31]

      (a) Ge, P. H.; Sun, K. N.; Cheng, Y. Optik 2019, 188, 200; (b) Liu, F.; Liang, Y. J.; Pan, Z. W. Phys. Rev. Lett. 2014, 113, 177401; (c) Li, Z. J.; Huang, L.; Zhang, Y. W.; Zhao, Y.; Yang, H.; Han, G. Nano Res. 2017, 10, 1840; (d) Xue, Z. L.; Li, X. L.; Li, Y. B.; Jiang, M. Y.; Ren, G. Z.; Liu, H. R.; Zeng, S. J.; Hao, J. H. Nanoscale 2017, 9, 7276.

    32. [32]

      (a) Zhou, H. C. J.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415; (b) Ding, M.; Cai, X.; Jiang, H. L. Chem. Sci. 2019, 10, 10209.

    33. [33]

      (a) Zhang, S. Y.; Shi, W.; Cheng, P.; Zaworotko, M. J. J. Am. Chem. Soc. 2015, 137, 12203; (b) Wu, S. Y.; Lin, Y. N.; Liu, J.; Shi, W.; Yang, G. M.; Cheng, P. Adv. Funct. Mater. 2018, 28, 1707169; (c) Xia, C.; Xu, Y.; Cao, M. M.; Liu, Y. P.; Xia, J. F.; Jiang, D. Y.; Zhou, G. H.; Xie, R. J.; Zhang, D. F.; Li, H. L. Talanta 2020, 212, 120795; (d) Ren, H. X.; Miao, Y. B.; Zhang, Y. Microchim. Acta 2020, 187, 114; (e) Qu, F.; Ding, Y. R.; Lv, X. X.; Xia, L.; You, J. M.; Han, W. L. Anal. Bioanal. Chem. 2019, 411, 3979.

    34. [34]

      Cui, Y. J.; Zhang, J.; He, H. J.; Qian, G. D. Chem. Soc. Rev. 2018, 47, 5740.  doi: 10.1039/C7CS00879A

    35. [35]

      Rieter, W. J.; Taylor, K. M. L.; Lin, W. J. Am. Chem. Soc. 2007, 129, 9852.  doi: 10.1021/ja073506r

    36. [36]

      Mahata, P.; Mondal, S. K.; Singha, D. K.; Majee, P. Dalton Trans. 2017, 46, 301.  doi: 10.1039/C6DT03419E

    37. [37]

      Juskowiak, B. Anal. Bioanal. Chem. 2011, 399, 3157.  doi: 10.1007/s00216-010-4304-5

    38. [38]

      (a) Sakamoto, T.; Ennifar, E.; Nakamura, Y. Biochimie 2018, 145, 91; (b) Zhou, J. H.; Rossi, J. Nat. Rev. Drug Discovery 2017, 16, 181.

    39. [39]

      Zhang, L.; Lei, J. P.; Liu, J. T.; Ma, F. J.; Ju, H. X. Biomaterials 2015, 67, 323.  doi: 10.1016/j.biomaterials.2015.07.037

    40. [40]

      Huo, Y.; Qi, L.; Lv, X. J.; Lai, T.; Zhang, J.; Zhang, Z. Q. Biosens. Bioelectron. 2016, 78, 315.  doi: 10.1016/j.bios.2015.11.043

    41. [41]

      Chen, H. Q.; Yuan, F.; Wang, S. Z.; Xu, J.; Zhang, Y. Y.; Wang, L. Biosens. Bioelectron. 2013, 48, 19.  doi: 10.1016/j.bios.2013.03.083

    42. [42]

      Duan, N.; Wu, S. J.; Zhu, C. Q.; Ma, X. Y.; Wang, Z. P.; Yu, Y.; Jiang, Y. Anal. Chim. Acta 2012, 723, 1.  doi: 10.1016/j.aca.2012.02.011

    43. [43]

      Qu, A. H.; Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Kuang, H.; Xu, C. L. Nanoscale 2017, 9, 3865.  doi: 10.1039/C6NR09114H

    44. [44]

      Liu, J. M.; Yuan, X, Y.; Liu, H, L.; Cheng, D.; Wang, S. RSC Adv. 2018, 8, 28414.  doi: 10.1039/C8RA05555F

    45. [45]

      Wang, Y.; Bao, L.; Liu, Z. H.; Pang, D. W. Anal. Chem. 2011, 83, 8130.  doi: 10.1021/ac201631b

    46. [46]

      Zhu, H.; Ding, Y.; Wang, A.; Sun, X.; Wu, X. C.; Zhu, J. J. J. Mater. Chem. B 2015, 3, 458.  doi: 10.1039/C4TB01320D

    47. [47]

      Liu, X. Y.; Ren, J.; Su, L. H.; Gao, X.; Tang, Y. W.; Ma, T.; Zhu, L. J.; Li, J. R. Biosens. Bioelectron. 2017, 87, 203.  doi: 10.1016/j.bios.2016.08.051

    48. [48]

      (a) Holmes, P.; James, K. A. F.; Levy, L. S. Sci. Total Environ. 2009, 408, 171; (b)Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol. 2003, 18, 149.

    49. [49]

      (a) Yang, Y. B.; Yang, X. D.; Yang, Y. J.; Yuan, Q. Carbon 2018, 129, 380; (b) Wang, Q.; Chen, L.; Long, Y. T.; Tian, H.; Wu, J. C. Theranostics 2013, 3, 395.

    50. [50]

      Wang, J.; Wei, T.; Li, X. Y.; Zhang, B. H.; Wang, J. X.; Huang, C.; Yuan, Q. Angew. Chem. Int. Ed. 2014, 53, 1616.  doi: 10.1002/anie.201308843

    51. [51]

      Zhao, J.; Gao, J.; Xue, W.; Di, Z.; Xing, H.; Lu, Y.; Li, L. L. J. Am. Chem. Soc. 2018, 140, 578.  doi: 10.1021/jacs.7b11161

    52. [52]

      Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q. Anal. Chem. 2012, 84, 6263.  doi: 10.1021/ac301534w

    53. [53]

      (a) Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.; Chen, Q. S. J. Agric. Food Chem. 2018, 66, 6188; (b) Wu, S. J.; Duan, N.; Shi, Z.; Fang, C. C.; Wang, Z. P. Talanta 2014, 128, 327.

    54. [54]

      Xu, Y. X.; Meng, X. F.; Liu, J. L.; Dang, S.; Shi, L. Y.; Sun, L. N. CrystEngComm 2016, 18, 4032.  doi: 10.1039/C5CE02537K

    55. [55]

      Guan, X. L.; Li, Z. F.; Wang, L.; Liu, M. N.; Wang, K. L.; Yang, X. Q.; Li, Y. L.; Hu, L. L.; Zhao, X. L.; Lai, S. J.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 1268(in Chinese).
       

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(21)
  • Abstract views(1342)
  • HTML views(343)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return