Citation: Yao Xuting, Huang Xin, Lin Yuxia, Liu Yueming. Deactivated TS-1 as Efficient Catalyst for Hydration of Cyclohexene to Cyclohexanol[J]. Acta Chimica Sinica, ;2020, 78(10): 1111-1119. doi: 10.6023/A20060246 shu

Deactivated TS-1 as Efficient Catalyst for Hydration of Cyclohexene to Cyclohexanol

  • Corresponding author: Liu Yueming, ymliu@chem.ecnu.edu.cn
  • Received Date: 18 June 2020
    Available Online: 3 September 2020

    Fund Project: Project supported by the National key Research and Development Program of China (No. 2016YFB0701100)The National key Research and Development Program of China 2016YFB0701100

Figures(14)

  • Cyclohexanol is an important chemical intermediate material. At present, ZSM-5 is mainly used as a catalyst in the industry to produce cyclohexanol by one-step hydration of cyclohexene. Its core is the development of high-performance catalysts. TS-1 is a high efficient catalyst for industrial liquid-phase ammoniation of cyclohexanone, which shows a typical Brønsted acidity after deactivation. Based on this, we applied the deactivated TS-1 as catalyst for cyclohexene hydration reaction, and investigated systematically the effects of reaction time, reaction temperature, catalyst dosage and mass ratio of water to oil on the hydration reaction of cyclohexene. The results showed that the deactivated TS-1 could offer a high catalytic performance with 11.0% yield and 99.8% selectivity towards cyclohexanol under the optimized reaction conditions, which indicated that the deactivated TS-1 is a high-performance catalyst and possesses the characteristics of high activity, high selectivity and high stability. Combined with nitric acid treating modification, potassium ion exchange experiment and the characterization techniques such as UV-Vis (UV-visible spectroscopy), FT-IR (Fourier transform infrared spectrometer), 29Si MAS NMR (29Si magic angle solid nuclear magnetic resonance), and NH3-TPD (temperature-programmed desorption of ammonia), it was found that the deactivated TS-1 possesses two kinds of Brønsted acid sites, whereas its real active center for the hydration reaction of cyclohexene is silanol group adjacent to titanium hydroxyl group (Si-OH(Ti)). The structure of this Brønsted acid site is completely different from the skeleton bridge Brønsted acid site (Si-(OH)-Al) of ZSM-5 zeolite, meanwhile shows relatively weak acid strength. The unique acid property of Si-OH(Ti) could promote the main reaction path of cyclohexanol formation and inhibit the side reaction path of cyclohexene isomerization in cyclohexene hydration reaction, which determined its characteristic of high cyclohexanol selectivity. The discovery and application of the special Brønsted acid site of the deactivated TS-1 waste catalyst can provide a new idea for resource utilization of solid waste resources of spent catalyst.
  • 加载中
    1. [1]

      Guo, Z. W.; Jin, H. B.; Tong, Z. M. Chem. Prog. 2006, 25, 852 (in Chinese).

    2. [2]

      Hiroshi, F.; Fujinao, M.; Masao, K. JP02040334, 1990 [Chem. Abstr. 1990, 112, 216297].

    3. [3]

      Yang, X. D.; Wang, X. M.; Gao, S. B.; Wang, A. J. Acta Chim. Sinica 2017, 75, 479 (in Chinese).
       

    4. [4]

      Fang, W. J.; Xie, W. J.; Xing, Y.; Guo, Y. S.; Lin, R. S. Acta Chim. Sinica 2009, 67, 6 (in Chinese).

    5. [5]

      Fukuoka, Y.; Mitsui, O. JP60104031A, 1985 [Chem. Abstr. 1985, 103, 123067].

    6. [6]

      Tojo, M.; Fukuoka, Y. JP61180735A, 1986 [Chem. Abstr. 1986, 106, 17969].

    7. [7]

      Wang, H.; Fan, W. B.; Li, Y. C.; Dong, M.; Li, J. F.; Wang, G. F.; Qin, Z. F.; Wang, J. G. Acta Chim. Sinica 2016, 74, 529 (in Chinese).
       

    8. [8]

      Qiao, M. H.; Zong, B. N.; Cheng, S. J.; Zeng, Y.; Pei, Y.; Fan, K. N. Acta Chim. Sinica 2019, 77, 1054 (in Chinese).
       

    9. [9]

      Taramasso, M.; Perego, G.; Notari, B. US 4410501A, 1983[Chem. Abstr. 1983, 95, 206272].

    10. [10]

      Nijhuis, T. A.; Huizinga, B. J.; Makkee, M.; Moulijin, J. A. Ind. Eng. Chem. Res. 1997, 151, 355.

    11. [11]

      Sun, B. Pet. Ref. Chem. Ind. 2005, 36, 54 (in Chinese).

    12. [12]

      Ishida, H. Catal. Surv. Jpn. 1997, 1, 241.  doi: 10.1023/A:1019037316000

    13. [13]

      Su, J.; Xiong, G.; Zhou, J. C.; Liu, W. H.; Zhou, D. H.; Wang, G. R.; Wang, X. S.; Guo, H. C. J. Catal. 2012, 288, 1.  doi: 10.1016/j.jcat.2011.12.006

    14. [14]

      Fang, X. Q.; Wang, Q.; Zheng, A. M.; Liu, Y. M.; Wang, Y. N.; Deng, X. J.; Wu, H. H.; Deng, F.; He, M. Y.; Wu, P. Catal. Sci. Techonol. 2012, 2, 2433.  doi: 10.1039/c2cy20446k

    15. [15]

      Wang, Y.; Liu, Y. M.; Li, X. H.; Wu, H. H.; He, M. Y.; Wu, P. J. Catal. 2009, 266, 258.  doi: 10.1016/j.jcat.2009.06.016

    16. [16]

      Vayssilov, G. N. Catal. Rev. Sci. Eng. 1997, 39, 209.  doi: 10.1080/01614949709353777

    17. [17]

      Blasco, T.; Camblor, M. A.; Corma, A. J. Am. Chem. Soc. 1993, 115, 11806.  doi: 10.1021/ja00078a020

    18. [18]

      Notari, B. Catal. Today 1993, 18, 163.  doi: 10.1016/0920-5861(93)85029-Y

    19. [19]

      Liu, Z. F.; Davis, R. J. J. Phys. Chem. 1994, 98, 1253.  doi: 10.1021/j100055a035

    20. [20]

      Liu, Y. Q.; Li, Y. X.; Wu, W. Pet. Ref. Chem. Ind. 2002, 5, 41 (in Chinese).

    21. [21]

      Itoh, M.; Hattori, H.; Tanabe, K. J. Catal. 1974, 35, 225.  doi: 10.1016/0021-9517(74)90201-2

    22. [22]

      Lin, L. F.; Qiu, C. F.; Zhuo, Z. X.; Zhang, D. W.; Zhao, S. F.; Wu, H. H.; Liu, Y. M.; He, M. Y. J. Catal. 2014, 309, 136.  doi: 10.1016/j.jcat.2013.09.011

    23. [23]

      Lin, L. F.; Zhao, S. F.; Zhang, D. W.; Fan, H.; Liu, Y. M.; He, M. Y. ACS Catal. 2015, 5, 4048.  doi: 10.1021/cs501967r

    24. [24]

      Corma, A.; Orchillés, A. V. Micro. Meso. Mater. 2000, 35, 21.

    25. [25]

      Emeis, C. A. J. Catal. 1993, 141, 347.  doi: 10.1006/jcat.1993.1145

    26. [26]

      Barzetti, T.; Selli, E.; Moscotti, D.; Forni, L. J. Chem. Soc., Faraday Trans. 1996, 92, 1401.  doi: 10.1039/ft9969201401

    27. [27]

      Post, J. G.; Van Hooff, J. H. C. Zeolites 1984, 4, 9.  doi: 10.1016/0144-2449(84)90065-4

    28. [28]

      Farneth, W. E.; Gorte, R. J. Chem. Rev. 1995, 95, 615.  doi: 10.1021/cr00035a007

    29. [29]

      Al-Dughaither, A. S.; de Lasa, H. Ind. Eng. Chem. Res. 2014, 53, 15303.  doi: 10.1021/ie4039532

    30. [30]

      Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Phys. Chem. B 2001, 105, 2897.  doi: 10.1021/jp002816s

    31. [31]

      Liu, H.; Lu, G. Z.; Guo, Y. L.; Guo, Y.; Wang, J. S. Catal. Today 2004, 93, 353.

    32. [32]

      Qi, Y. Y.; Ye, C. B.; Zhuang, Z.; Xin, F. Micro. Meso. Mater. 2011, 142, 661.  doi: 10.1016/j.micromeso.2011.01.012

    33. [33]

      Wang, Y.; Liu, Y. M.; Li, X. H.; Wu, H. H.; He, M. Y.; Wu, P. J. Catal. 2009, 266, 258.  doi: 10.1016/j.jcat.2009.06.016

    34. [34]

      Zhuo, Z. X.; Lin, L. F.; Deng, X. J.; Wang, Y. N.; Liu, Y. M. Chin. J. Catal. 2013, 34, 604.

    35. [35]

      Tozzola, G.; Mantegazza, M. A.; Ranghino, G.; Petrini, G.; Bordiga, S.; Ricchiardi, G.; Lamberti, C.; Zulian, R.; Zecchina, A. J. Catal. 1998, 179, 64.  doi: 10.1006/jcat.1998.2205

    36. [36]

      Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spano, G.; Rivetti, F.; Zecchina, A. J. Am. Chem. Soc. 2001, 123, 11409.  doi: 10.1021/ja010607v

    37. [37]

      Camblor, M. A.; Corma, A.; Pérez-Pariente, J. J. Chem. Soc., Chem. Commun. 1993, 557.

    38. [38]

      Wang, D. Z.; Shu, X. T.; He, M. Y. Chin. J. Catal. 2002, 23, 503 (in Chinese).

    39. [39]

      Zhao, G. L.; Teng, J. W.; Xie, Z. K.; Jin, W. Q.; Yang, W. M.; Chen, Q. L.; Tang, Y. J. Catal. 2007, 248, 29.  doi: 10.1016/j.jcat.2007.02.027

  • 加载中
    1. [1]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    12. [12]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    13. [13]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    14. [14]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    15. [15]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    16. [16]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    17. [17]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    18. [18]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

Metrics
  • PDF Downloads(7)
  • Abstract views(1045)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return