Citation: Yao Xuting, Huang Xin, Lin Yuxia, Liu Yueming. Deactivated TS-1 as Efficient Catalyst for Hydration of Cyclohexene to Cyclohexanol[J]. Acta Chimica Sinica, ;2020, 78(10): 1111-1119. doi: 10.6023/A20060246 shu

Deactivated TS-1 as Efficient Catalyst for Hydration of Cyclohexene to Cyclohexanol

  • Corresponding author: Liu Yueming, ymliu@chem.ecnu.edu.cn
  • Received Date: 18 June 2020
    Available Online: 3 September 2020

    Fund Project: Project supported by the National key Research and Development Program of China (No. 2016YFB0701100)The National key Research and Development Program of China 2016YFB0701100

Figures(14)

  • Cyclohexanol is an important chemical intermediate material. At present, ZSM-5 is mainly used as a catalyst in the industry to produce cyclohexanol by one-step hydration of cyclohexene. Its core is the development of high-performance catalysts. TS-1 is a high efficient catalyst for industrial liquid-phase ammoniation of cyclohexanone, which shows a typical Brønsted acidity after deactivation. Based on this, we applied the deactivated TS-1 as catalyst for cyclohexene hydration reaction, and investigated systematically the effects of reaction time, reaction temperature, catalyst dosage and mass ratio of water to oil on the hydration reaction of cyclohexene. The results showed that the deactivated TS-1 could offer a high catalytic performance with 11.0% yield and 99.8% selectivity towards cyclohexanol under the optimized reaction conditions, which indicated that the deactivated TS-1 is a high-performance catalyst and possesses the characteristics of high activity, high selectivity and high stability. Combined with nitric acid treating modification, potassium ion exchange experiment and the characterization techniques such as UV-Vis (UV-visible spectroscopy), FT-IR (Fourier transform infrared spectrometer), 29Si MAS NMR (29Si magic angle solid nuclear magnetic resonance), and NH3-TPD (temperature-programmed desorption of ammonia), it was found that the deactivated TS-1 possesses two kinds of Brønsted acid sites, whereas its real active center for the hydration reaction of cyclohexene is silanol group adjacent to titanium hydroxyl group (Si-OH(Ti)). The structure of this Brønsted acid site is completely different from the skeleton bridge Brønsted acid site (Si-(OH)-Al) of ZSM-5 zeolite, meanwhile shows relatively weak acid strength. The unique acid property of Si-OH(Ti) could promote the main reaction path of cyclohexanol formation and inhibit the side reaction path of cyclohexene isomerization in cyclohexene hydration reaction, which determined its characteristic of high cyclohexanol selectivity. The discovery and application of the special Brønsted acid site of the deactivated TS-1 waste catalyst can provide a new idea for resource utilization of solid waste resources of spent catalyst.
  • 加载中
    1. [1]

      Guo, Z. W.; Jin, H. B.; Tong, Z. M. Chem. Prog. 2006, 25, 852 (in Chinese).

    2. [2]

      Hiroshi, F.; Fujinao, M.; Masao, K. JP02040334, 1990 [Chem. Abstr. 1990, 112, 216297].

    3. [3]

      Yang, X. D.; Wang, X. M.; Gao, S. B.; Wang, A. J. Acta Chim. Sinica 2017, 75, 479 (in Chinese).
       

    4. [4]

      Fang, W. J.; Xie, W. J.; Xing, Y.; Guo, Y. S.; Lin, R. S. Acta Chim. Sinica 2009, 67, 6 (in Chinese).

    5. [5]

      Fukuoka, Y.; Mitsui, O. JP60104031A, 1985 [Chem. Abstr. 1985, 103, 123067].

    6. [6]

      Tojo, M.; Fukuoka, Y. JP61180735A, 1986 [Chem. Abstr. 1986, 106, 17969].

    7. [7]

      Wang, H.; Fan, W. B.; Li, Y. C.; Dong, M.; Li, J. F.; Wang, G. F.; Qin, Z. F.; Wang, J. G. Acta Chim. Sinica 2016, 74, 529 (in Chinese).
       

    8. [8]

      Qiao, M. H.; Zong, B. N.; Cheng, S. J.; Zeng, Y.; Pei, Y.; Fan, K. N. Acta Chim. Sinica 2019, 77, 1054 (in Chinese).
       

    9. [9]

      Taramasso, M.; Perego, G.; Notari, B. US 4410501A, 1983[Chem. Abstr. 1983, 95, 206272].

    10. [10]

      Nijhuis, T. A.; Huizinga, B. J.; Makkee, M.; Moulijin, J. A. Ind. Eng. Chem. Res. 1997, 151, 355.

    11. [11]

      Sun, B. Pet. Ref. Chem. Ind. 2005, 36, 54 (in Chinese).

    12. [12]

      Ishida, H. Catal. Surv. Jpn. 1997, 1, 241.  doi: 10.1023/A:1019037316000

    13. [13]

      Su, J.; Xiong, G.; Zhou, J. C.; Liu, W. H.; Zhou, D. H.; Wang, G. R.; Wang, X. S.; Guo, H. C. J. Catal. 2012, 288, 1.  doi: 10.1016/j.jcat.2011.12.006

    14. [14]

      Fang, X. Q.; Wang, Q.; Zheng, A. M.; Liu, Y. M.; Wang, Y. N.; Deng, X. J.; Wu, H. H.; Deng, F.; He, M. Y.; Wu, P. Catal. Sci. Techonol. 2012, 2, 2433.  doi: 10.1039/c2cy20446k

    15. [15]

      Wang, Y.; Liu, Y. M.; Li, X. H.; Wu, H. H.; He, M. Y.; Wu, P. J. Catal. 2009, 266, 258.  doi: 10.1016/j.jcat.2009.06.016

    16. [16]

      Vayssilov, G. N. Catal. Rev. Sci. Eng. 1997, 39, 209.  doi: 10.1080/01614949709353777

    17. [17]

      Blasco, T.; Camblor, M. A.; Corma, A. J. Am. Chem. Soc. 1993, 115, 11806.  doi: 10.1021/ja00078a020

    18. [18]

      Notari, B. Catal. Today 1993, 18, 163.  doi: 10.1016/0920-5861(93)85029-Y

    19. [19]

      Liu, Z. F.; Davis, R. J. J. Phys. Chem. 1994, 98, 1253.  doi: 10.1021/j100055a035

    20. [20]

      Liu, Y. Q.; Li, Y. X.; Wu, W. Pet. Ref. Chem. Ind. 2002, 5, 41 (in Chinese).

    21. [21]

      Itoh, M.; Hattori, H.; Tanabe, K. J. Catal. 1974, 35, 225.  doi: 10.1016/0021-9517(74)90201-2

    22. [22]

      Lin, L. F.; Qiu, C. F.; Zhuo, Z. X.; Zhang, D. W.; Zhao, S. F.; Wu, H. H.; Liu, Y. M.; He, M. Y. J. Catal. 2014, 309, 136.  doi: 10.1016/j.jcat.2013.09.011

    23. [23]

      Lin, L. F.; Zhao, S. F.; Zhang, D. W.; Fan, H.; Liu, Y. M.; He, M. Y. ACS Catal. 2015, 5, 4048.  doi: 10.1021/cs501967r

    24. [24]

      Corma, A.; Orchillés, A. V. Micro. Meso. Mater. 2000, 35, 21.

    25. [25]

      Emeis, C. A. J. Catal. 1993, 141, 347.  doi: 10.1006/jcat.1993.1145

    26. [26]

      Barzetti, T.; Selli, E.; Moscotti, D.; Forni, L. J. Chem. Soc., Faraday Trans. 1996, 92, 1401.  doi: 10.1039/ft9969201401

    27. [27]

      Post, J. G.; Van Hooff, J. H. C. Zeolites 1984, 4, 9.  doi: 10.1016/0144-2449(84)90065-4

    28. [28]

      Farneth, W. E.; Gorte, R. J. Chem. Rev. 1995, 95, 615.  doi: 10.1021/cr00035a007

    29. [29]

      Al-Dughaither, A. S.; de Lasa, H. Ind. Eng. Chem. Res. 2014, 53, 15303.  doi: 10.1021/ie4039532

    30. [30]

      Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Phys. Chem. B 2001, 105, 2897.  doi: 10.1021/jp002816s

    31. [31]

      Liu, H.; Lu, G. Z.; Guo, Y. L.; Guo, Y.; Wang, J. S. Catal. Today 2004, 93, 353.

    32. [32]

      Qi, Y. Y.; Ye, C. B.; Zhuang, Z.; Xin, F. Micro. Meso. Mater. 2011, 142, 661.  doi: 10.1016/j.micromeso.2011.01.012

    33. [33]

      Wang, Y.; Liu, Y. M.; Li, X. H.; Wu, H. H.; He, M. Y.; Wu, P. J. Catal. 2009, 266, 258.  doi: 10.1016/j.jcat.2009.06.016

    34. [34]

      Zhuo, Z. X.; Lin, L. F.; Deng, X. J.; Wang, Y. N.; Liu, Y. M. Chin. J. Catal. 2013, 34, 604.

    35. [35]

      Tozzola, G.; Mantegazza, M. A.; Ranghino, G.; Petrini, G.; Bordiga, S.; Ricchiardi, G.; Lamberti, C.; Zulian, R.; Zecchina, A. J. Catal. 1998, 179, 64.  doi: 10.1006/jcat.1998.2205

    36. [36]

      Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spano, G.; Rivetti, F.; Zecchina, A. J. Am. Chem. Soc. 2001, 123, 11409.  doi: 10.1021/ja010607v

    37. [37]

      Camblor, M. A.; Corma, A.; Pérez-Pariente, J. J. Chem. Soc., Chem. Commun. 1993, 557.

    38. [38]

      Wang, D. Z.; Shu, X. T.; He, M. Y. Chin. J. Catal. 2002, 23, 503 (in Chinese).

    39. [39]

      Zhao, G. L.; Teng, J. W.; Xie, Z. K.; Jin, W. Q.; Yang, W. M.; Chen, Q. L.; Tang, Y. J. Catal. 2007, 248, 29.  doi: 10.1016/j.jcat.2007.02.027

  • 加载中
    1. [1]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    4. [4]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    5. [5]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    8. [8]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    9. [9]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(8)
  • Abstract views(1164)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return