Citation: Zhao Jingjing, Zhang Zhengzhong, Chen Xiaolang, Wang Bei, Deng Jinyuan, Zhang Dieqing, Li Hexing. Microwave-induced Assembly of CuS@MoS2 Core-shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chimica Sinica, ;2020, 78(9): 961-967. doi: 10.6023/A20060244 shu

Microwave-induced Assembly of CuS@MoS2 Core-shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions

  • Corresponding author: Zhang Dieqing, dqzhang@shnu.edu.cn Li Hexing, hexing-li@shnu.edu.cn
  • Received Date: 17 June 2020
    Available Online: 27 July 2020

    Fund Project: Shanghai Government 18SG41the National Natural Science Foundation of China 21876112Project supported by the National Natural Science Foundation of China (Nos. 21876112, 21876112, NRF2017NRF-NSFC001-007), Program for Changjiang Scholars and Innovative Research Team in University (IRT1269) and Shanghai Government (18SG41), Shanghai Engineering Research Center of Green Energy Chemical Engineeringthe National Natural Science Foundation of China NRF2017NRF-NSFC001-007the National Natural Science Foundation of China 21876112Changjiang Scholars and Innovative Research Team in University IRT1269

Figures(10)

  • CuS@MoS2 core-shell nanotubes were prepared by microwave-induced assembly techniques in the present work. Firstly, the Cu nanowires were vulcanized into hollow CuS nanotubes. Secondly, the sheet-shaped MoS2 were uniformly intercalated and assembled onto the surface of CuS nanotubes. The as-prepared CuS@MoS2 core-shell nanotubes were used in photocatalytic Fenton-like reaction system to remove high-concentration rhodamine B (RhB) in aqueous solution, which exhibited 100% degradation rate within 30 min under visible light (λ>420 nm) irradiation. The morphology and structure of the as-obtained catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDS) and X-ray diffractometry (XRD). UV-Vis absorption spectroscopy (UV-vis DRS) was used to characterize its basic optical properties. And to further learn the catalytic mechanism and make sure the active species of the photocatalytic Fenton-like reaction system, the heterojunction structure of the catalyst was analyzed and electron spin resonance (ESR) spectrum was carried to prove the existence of superoxide (·O2-) species. The high activity could be attributed to the unique multi-layer structure of CuS@MoS2, corresponding to the enhanced absorption and exciting ability of visible lights. Meanwhile, the heterojunction structure formed between MoS2 and CuS also promoted the transfer of photogenerated electrons, which could inhibit their recombination with photogenerated holes. More importantly, the cooperation mechanism formed between photocatalysis and Fenton-like reactions may exhibit strong promoting effect. The Cu2+ ions in CuS reacted with H2O2 to form a Fenton-like cycle, allowing the generation of reactive hydroxyl (·OH) species. While, the photogenerated electrons reacted with both the H2O2 and the molecular oxygen activated by MoS2 to produce ·OH and ·O2- species. Both ·OH and ·O2- species worked together to oxidize pollutants rapidly. This work developed a recycled photocatalytic Fenton-like reaction system, which may offer new pathway for the treatment of environmental pollution.
  • 加载中
    1. [1]

      Deng, W.; Zhao, H.; Pan, F.; Feng, X.; Jung, B.; Abdel-Wahab, A.; Batchelor, B.; Li, Y. Environ. Sci. Technol. 2017, 51, 13372.  doi: 10.1021/acs.est.7b04206

    2. [2]

      Cheng, Y. Y.; Tsai, T. H. J. Agric. Food Chem. 2017, 65, 1078.  doi: 10.1021/acs.jafc.6b04975

    3. [3]

      Huang, Y.; Wang, D.; Liu, W.; Zheng, L.; Wang, Y.; Liu, X.; Fan, M.; Gong, Z. Food Chem. 2020, 316, 126378.  doi: 10.1016/j.foodchem.2020.126378

    4. [4]

      Farshid, G.; Mahsa, M. Chem. Eng. J. 2017, 310, 41.  doi: 10.1016/j.cej.2016.10.064

    5. [5]

      Ma, Y.; Liu, R.; Meng, S.; Niu, L.; Yang, Z.; Lei, Z. Acta Chim. Sinica 2019, 77, 153(in Chinese).
       

    6. [6]

      Yang, B.; Zhang, Y. Acta Chim. Sinica 2019, 77, 1017(in Chinese).
       

    7. [7]

      Hao, X.; Zou, L.; Zhang, G.; Zhang, Y. Chinese Chem. Lett. 2009, 20, 99.  doi: 10.1016/j.cclet.2008.09.058

    8. [8]

      Hu, L.; Xu, D.; Zou, L.; Yuan, H.; Hu, X. Acta Phys.-Chim. Sin. 2015, 31, 771.  doi: 10.3866/PKU.WHXB201503023

    9. [9]

      Wang, S. Dyes Pigm. 2008, 76, 714.  doi: 10.1016/j.dyepig.2007.01.012

    10. [10]

      Wang, N. N.; Zheng, T.; Zhang, G. S.; Wang, P. J. Environ. Chem. Eng. 2016, 4, 762.  doi: 10.1016/j.jece.2015.12.016

    11. [11]

      Huang, D.; He, J.; Gu, Y.; He, F. Acta Chim. Sinica 2017, 75, 866(in Chinese).
       

    12. [12]

      Yu, H.; Fang, R.; Chen, S.; Zou, G. Acta Chim. Sinica 2005, 63, 1357(in Chinese).
       

    13. [13]

      Bokare, A. D.; Choi, W. J. Hazard. Mater. 2014, 275, 121.  doi: 10.1016/j.jhazmat.2014.04.054

    14. [14]

      Bello, M. M.; Raman, A. A. A.; Asghar, A. Process Saf. Environ. Prot. 2019, 126, 119.  doi: 10.1016/j.psep.2019.03.028

    15. [15]

      Yang, X.; Cheng, X.; Elzatahry, A. A.; Chen, J.; Alghamdi, A.; Deng, Y. Chinese Chem. Lett. 2019, 30, 324.  doi: 10.1016/j.cclet.2018.06.026

    16. [16]

      Marschall, R. Adv. Funct. Mater. 2014, 24, 2421.  doi: 10.1002/adfm.201303214

    17. [17]

      Yang, X.; Wang, D. ACS Appl. Energy Mater. 2018, 1, 6657.  doi: 10.1021/acsaem.8b01345

    18. [18]

      Yin, S.; Au, C.; Li, H. Acta Phys.-Chim. Sin. 2020, 36, 1910023(in Chinese).
       

    19. [19]

      Pan, D.; Xiao, S.; Chen, X.; Li, R.; Cao, Y.; Zhang, D.; Pu, S.; Li, Z.; Li, G.; Li, H. Environ. Sci. Technol. 2019, 53, 3697.  doi: 10.1021/acs.est.8b05685

    20. [20]

      Zhu, S.; Chen, X.; Li, Z.; Ye, X.; Liu, Y.; Chen, Y.; Yang, L.; Chen, M.; Zhang, D.; Li, G.; Li, H. Appl. Catal. B:Environ. 2020, 264, 118515.  doi: 10.1016/j.apcatb.2019.118515

    21. [21]

      Mady, A. H.; Baynosa, M. L.; Tuma, D.; Shim, J. J. Appl. Catal. B:Environ. 2017, 203, 416.  doi: 10.1016/j.apcatb.2016.10.033

    22. [22]

      Yuan, D.; Sun, M.; Tang, S.; Zhang, Y.; Wang, Z.; Qi, J.; Rao, Y.; Zhang, Q. Chinese Chem. Lett. 2020, 31, 547.  doi: 10.1016/j.cclet.2019.09.051

    23. [23]

      Chen, J.; Chao, F.; Ma, X.; Zhu, Q.; Jiang, J.; Ren, J.; Guo, Y.; Lou, Y. Inorg. Chem. Commun. 2019, 104, 223.  doi: 10.1016/j.inoche.2019.04.022

    24. [24]

      Wang, Y.; Zhang, L.; Jiu, H.; Li, N.; Sun, Y. Appl. Surf. Sci. 2014, 303, 54.  doi: 10.1016/j.apsusc.2014.02.058

    25. [25]

      Yin, X.-L.; Li, L.-L.; Liu, M.-L.; Li, D.-C.; Shang, L.; Dou, J.-M. Chem. Eng. J. 2019, 370, 305.  doi: 10.1016/j.cej.2019.03.231

    26. [26]

      Deng, C.; Ge, X.; Hu, H.; Yao, L.; Han, C.; Zhao, D. CrystEngComm 2014, 16, 2738.  doi: 10.1039/C3CE42376J

    27. [27]

      Wang, W.; Zhu, S.; Cao, Y.; Tao, Y.; Li, X.; Pan, D.; Phillips, D.; Zhang, D.; Chen, M.; Li, G.; Li, H. Adv. Func. Mater. 2019, 29, 1901958.  doi: 10.1002/adfm.201901958

    28. [28]

      Guo, L.; Zhang, K. L.; Han, X. X.; Zhao, Q.; Wang, D. J.; Fu, F. Nanomaterials 2019, 9, 1151.  doi: 10.3390/nano9081151

    29. [29]

      Xiao, S.; Dai, W.; Liu, X.; Pan, D.; Zou, H.; Li, G.; Zhang, G.; Su, C.; Zhang, D.; Chen, W.; Li, H. Adv. Energy Mater. 2019, 9, 1900775.  doi: 10.1002/aenm.201900775

    30. [30]

      Wu, C.; Yu, S.-H.; Chen, S.; Liu, G.; Liu, B. J. Mater. Chem. 2006, 16, 3326.  doi: 10.1039/b606226a

    31. [31]

      Qiu, J.; Zheng, W.; Yuan, R.; Yue, C.; Li, D.; Liu, F.; Zhu, J. Appl. Catal. B:Environ. 2020, 264, 118514.  doi: 10.1016/j.apcatb.2019.118514

    32. [32]

      He, Y.; Tan, Y.; Zhang, J. Acta Chim. Sinica 2014, 72, 1228(in Chinese).
       

    33. [33]

      Meng, N.; Zhou, Y.; Nie, W.; Song, L.; Chen, P. J. Nanopart. Res. 2015, 17, 300.  doi: 10.1007/s11051-015-3105-3

    34. [34]

      Gao, Q.; Giordano, C.; Antonietti, M. Angew. Chem. Int. Ed. 2012, 51, 11740.  doi: 10.1002/anie.201206542

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(15)
  • Abstract views(2978)
  • HTML views(535)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return