Citation: Zhang Liang, Zhao Wen-Long, Li Meng, Lu Hai-Yan, Chen Chuan-Feng. Recent Progress on Room-Temperature Phosphorescent Materials of Organic Small Molecules[J]. Acta Chimica Sinica, ;2020, 78(10): 1030-1040. doi: 10.6023/A20060243 shu

Recent Progress on Room-Temperature Phosphorescent Materials of Organic Small Molecules

  • Corresponding author: Lu Hai-Yan, haiyanlu@ucas.ac.cn Chen Chuan-Feng, cchen@iccas.ac.cn
  • Received Date: 17 June 2020
    Available Online: 13 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 91956119, 21971235, 21871272)the National Natural Science Foundation of China 21971235the National Natural Science Foundation of China 91956119the National Natural Science Foundation of China 21871272

Figures(23)

  • Room-temperature phosphorescence (RTP) can not only intuitively reflect the excited state transition process of the phosphorescent luminescence, but also has wide potential applications in optoelectronics, sensing, bioimaging and security devices. Consequently, more and more attention and interests on RTP materials have been attracted, which turned it to be one of hot topics in luminescence materials, especially, organic luminescence materials in recent years. The halogen bonds and hydrogen bonds between the molecules can fix the phosphor to suppress non-radiative transitions. A twisted donor-acceptor skeleton can promot efficient thermally activated delayed fluorescence (TADF) and also benefit to the RTP. Moreover, circularly polarized room-temperature phosphorescence (CP-RTP) also remains a daunting challenge to implant circularly polarized luminescence (CPL) in metal-free RTP materials. This review summarizes recent research progress on RTP of small organic molecules, mainly focusing on RTP materials based on hydrogen bonds, RTP materials containing halogens, RTP materials based on D-A structures and RTP materials with CPL properties.
  • 加载中
    1. [1]

      Wang, H.; Meng, L. Q.; Shen, X. X.; Wei, X.; Zheng, X.; Lv, X.; Yi, Y.; Wang, Y.; Wang, P. Adv. Mater. 2015, 27, 4041.  doi: 10.1002/adma.201501373

    2. [2]

      Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. Nat. Commun. 2018, 9, 840.  doi: 10.1038/s41467-018-03236-6

    3. [3]

      Li, J.; Jiang, Y.; Cheng, J.; Su, H.; Lam, J. W. Y.; Sung, H. H. Y.; Wong, K. S.; Kwok, H. S.; Tang, B. Z. Phys. Chem. Chem. Phys. 2015, 17, 1134.  doi: 10.1039/C4CP04052J

    4. [4]

      Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.; Jokerst, J. V.; Pu, K. Nat. Biotechnol. 2017, 35, 1102.  doi: 10.1038/nbt.3987

    5. [5]

      Wang, F.; Tao, Y.; Huang, W. Acta Chim. Sinica 2015, 73, 9 (in Chinese).
       

    6. [6]

      Ma, Y.; Chen, K.; Guo, Z.; Liu, S.; Zhao, Q.; Wong, W. Y. Acta Chim. Sinica 2020, 78, 23 (in Chinese).
       

    7. [7]

      Zhou, Y.; Chen, Y. Z.; Cao, J. H.; Yang, Q. Z.; Wu, L. Z.; Tung, C. H.; Wu, D. Y. Dyes Pigm. 2015, 112, 162.  doi: 10.1016/j.dyepig.2014.07.001

    8. [8]

      Mukherjee, S.; Thilagar, P. Chem. Commun. 2015, 51, 10988.  doi: 10.1039/C5CC03114A

    9. [9]

      Ma, H.; Peng, Q.; An, Z.; Huang, W.; Shuai, Z. J. Am. Chem. Soc. 2019, 141, 1010.  doi: 10.1021/jacs.8b11224

    10. [10]

      Xiao, L.; Fu, H. Chem. Eur. J. 2019, 25, 714.  doi: 10.1002/chem.201802819

    11. [11]

      Hirata, S. Adv. Opt. Mater. 2017, 5, 1700116.  doi: 10.1002/adom.201700116

    12. [12]

      Forni, A.; Lucenti, E.; Botta, C.; Cariati, E. J. Mater. Chem. C 2018, 6, 4603.  doi: 10.1039/C8TC01007B

    13. [13]

      Xu, S.; Chen, R.; Zheng, C.; Huang, W. Adv. Mater. 2016, 28, 9920.  doi: 10.1002/adma.201602604

    14. [14]

      Zhang, T.; Ma, X.; Wu, H.; Zhu, L.; Zhao, Y.; Tian, H. Angew. Chem., Int. Ed. 2020, 59, 2.  doi: 10.1002/anie.201914768

    15. [15]

      Gan, N.; Shi, H.; An, Z.; Huang, W. Adv. Funct. Mater. 2018, 28, 1802657.  doi: 10.1002/adfm.201802657

    16. [16]

      Ma, X.; Wang, J.; Tian, H. Acc. Chem. Res. 2019, 52, 738.  doi: 10.1021/acs.accounts.8b00620

    17. [17]

      Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962.  doi: 10.1021/acs.accounts.0c00060

    18. [18]

      Cai, S.; Shi, H.; Li, J.; Gu, L.; Ni, Y.; Cheng, Z.; Wang, S.; Xiong, W. W.; Li, L.; An, Z.; Huang, W. Adv. Mater. 2017, 29, 1701244.  doi: 10.1002/adma.201701244

    19. [19]

      An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Nat. Mater. 2015, 14, 685.  doi: 10.1038/nmat4259

    20. [20]

      Zhao, W.; He, Z.; Lam, J. W. Y.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Chem. 2016, 1, 592.  doi: 10.1016/j.chempr.2016.08.010

    21. [21]

      Gu, L.; Shi, H.; Bian, L.; Gu, M.; Ling, K.; Wang, X.; Ma, H.; Cai, S.; Ning, W.; Fu, L.; Wang, H.; Wang, S.; Gao, Y.; Yao, W.; Huo, F.; Tao, Y.; An, Z.; Liu, X.; Huang, W. Nat. Photonics 2019, 13, 406.  doi: 10.1038/s41566-019-0408-4

    22. [22]

      Kwon, M. S.; Lee, D.; Seo, S.; Jung, J.; Kim, J. Angew. Chem., Int Ed. 2014, 53, 11177.  doi: 10.1002/anie.201404490

    23. [23]

      Gong, Y.; Zhao, L.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y.; Tang, B. Z. Chem. Sci. 2015, 6, 4438.  doi: 10.1039/C5SC00253B

    24. [24]

      Chai, Z.; Wang, C.; Wang, J.; Fan, Liu.; Xie, Y.; Zhang, Y. Z.; Li, J. R.; Li, Q.; Li, Z. Chem. Sci. 2017, 8, 8336.  doi: 10.1039/C7SC04098A

    25. [25]

      Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z. Mater. Chem. Front. 2018, 2, 2124.  doi: 10.1039/C8QM00396C

    26. [26]

      Li, D.; Lu, F.; Wang, J.; Hu, W.; Cao, X. M.; Ma, X.; Tian, H. J. Am. Chem. Soc. 2018, 140, 1916.  doi: 10.1021/jacs.7b12800

    27. [27]

      Chen, J.; Yu, T.; Ubba, E.; Yang, Z.; Zhang, Y.; Liu, S.; Xu, J.; Aldred, M. P.; Chi, Z. Adv. Opt. Mater. 2019, 7, 1801593.  doi: 10.1002/adom.201801593

    28. [28]

      Chen, X.; Liu, Z. F.; Jin, W. J. J. Phys. Chem. A. 2020, 124, 2746.  doi: 10.1021/acs.jpca.9b11943

    29. [29]

      Bolton, O.; Lee, K.; Kim, H. J.; Lin, K. Y.; Kim, J. Nat. Chem. 2011, 3, 205.  doi: 10.1038/nchem.984

    30. [30]

      Xiao, L.; Wu, Y.; Yu, Z.; Xu, Z.; Li, J.; Liu, Y.; Yao, J.; Fu, H. Chem. Eur. J. 2018, 24, 1801.  doi: 10.1002/chem.201705391

    31. [31]

      Li, B.; Gong, Y.; Wang, L.; Lin, H.; Li, Q.; Guo, F.; Li, Z.; Peng, Q.; Shuai, Z.; Zhao, L.; Zhang, Y. J. Phys. Chem. Lett. 2019, 10, 7141.  doi: 10.1021/acs.jpclett.9b02885

    32. [32]

      Goudappagouda; Manthanath, A.; Wakchaure, V. C.; Ranjeesh, K. C.; Das T.; Vanka, K.; Nakanishi, T.; Babu, S. S. Angew. Chem., Int. Ed. 2019, 58, 2284.  doi: 10.1002/anie.201811834

    33. [33]

      Zhang, L.; Li, M.; Gao, Q.; Chen, C. F. Chin. J. Org. Chem. 2020, 40, 516 (in Chinese).

    34. [34]

      She, P.; Yu, Y.; Qin, Y.; Zhang, Y.; Li, F.; Ma, Y.; Liu, S.; Huang, W.; Zhao, Q. Adv. Opt. Mater. 2020, 8, 1901437.  doi: 10.1002/adom.201901437

    35. [35]

      Yu, L.; Wu, Z.; Zhong, C.; Xie, G.; Zhu, Z.; Ma D.; Yang, C. Adv. Opt. Mater. 2017, 5, 1700588.  doi: 10.1002/adom.201700588

    36. [36]

      Xiong, Y.; Zhao, Z.; Zhao, W.; Ma, H.; Peng, Q.; He, Z.; Zhang, X.; Chen, Y.; He, X.; Lam, J. W. Y.; Tang, B. Z. Angew. Chem., Int. Ed. 2018, 57, 7997.  doi: 10.1002/anie.201800834

    37. [37]

      Zhou, Y.; Qin, W.; Du, C.; Gao, H.; Zhu, F.; Liang, G. Angew. Chem., Int. Ed. 2019, 58, 12102.  doi: 10.1002/anie.201906312

    38. [38]

      Zhang, L.; Li, M.; Hu, T. P.; Wang, Y. F.; Shen, Y. F.; Yi, Y. P.; Lu, H. Y.; Gao, Q. Y.; Chen, C. F. Chem. Commun. 2019, 55, 12172.  doi: 10.1039/C9CC06384F

    39. [39]

      Zhang, L.; Li, M.; Gao, Q. Y.; Chen, C. F. Chem. Commun. 2020, 56, 4296.  doi: 10.1039/C9CC09636A

    40. [40]

      Hirata, S.; Vacha, M. J. Phys. Chem. Lett. 2016, 7, 1539.  doi: 10.1021/acs.jpclett.6b00554

    41. [41]

      Chen, W.; Tian, Z.; Li, Y.; Jiang, Y.; Liu, M.; Duan, P. Chem. Eur. J. 2018, 24, 17444.  doi: 10.1002/chem.201804342

    42. [42]

      Liang, X.; Liu, T. T.; Yan, Z. P.; Zhou, Y.; Su, J.; Luo, X. F.; Wu, Z. G.; Wang, Y.; Zheng, Y. X.; Zuo, J. L. Angew. Chem., Int. Ed. 2019, 58, 17220.  doi: 10.1002/anie.201909076

    43. [43]

      Li, H.; Li, H.; Wang, W.; Wang, S.; Yang, Q.; Jiang, Y.; Zheng, C.; Huang, W.; Chen, R. Angew. Chem., Int. Ed. 2020, 59, 4756.  doi: 10.1002/anie.201915164

    44. [44]

      Li, M.; Lin, W. B.; Fang, L.; Chen, C. F. Acta Chim. Sinica 2017, 75, 1150 (in Chinese).
       

    45. [45]

      Zhang, D. W.; Li, M.; Chen, C. F. Chem. Soc. Rev. 2020, 49, 1331.  doi: 10.1039/C9CS00680J

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(141)
  • Abstract views(3655)
  • HTML views(1416)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return