Citation: Zhao Li-Dong, Zuo Peng, Yin Bin-Cheng, Hong Chenglin, Ye Bang-Ce. A Cell Membrane-Anchored DNA Tetrahedral Sensor for Real-time Monitoring of Exosome Secretion[J]. Acta Chimica Sinica, ;2020, 78(10): 1076-1081. doi: 10.6023/A20060235 shu

A Cell Membrane-Anchored DNA Tetrahedral Sensor for Real-time Monitoring of Exosome Secretion

  • Corresponding author: Yin Bin-Cheng, binchengyin@ecust.edu.cn Hong Chenglin, hcl_tea@shzu.edu.cn Ye Bang-Ce, bcye@ecust.edu.cn
  • Received Date: 14 June 2020
    Available Online: 25 July 2020

    Fund Project: the National Natural Science Foundation of China 21822402Project supported by the National Natural Science Foundation of China (Nos. 21822402, 21675052, 31730004)the National Natural Science Foundation of China 21675052the National Natural Science Foundation of China 31730004

Figures(11)

  • Exosomes are nanoscale bilayer membrane vesicles actively secreted by cells, which carry abundant cell-specific substances. They can directly reflect the physiological and functional status of the secreting cells and play important roles in intercellular communication, physiological and pathological processes. In this work, we combined membrane modification technique with fluorescence imaging technique and blended CD63 aptamers into a highly stable and universal DNA tetrahedral structure to construct a cell membrane-anchored DNA sensor for real-time monitoring the secretion of exosomes. We designed four functional toes on each vertex of the tetrahedral sensor, respectively. A signal report toe on the top vertex consisted of fluorophore-modified CD63 aptamer, quencher-modified quencher probe(QP) binding part of the CD63 aptamer, and block probe (BP) binding the rest of the CD63 aptamer. The other three extended toes on the vertices were immobilized to the cell membrane by hybridizing with cholesterol-modified anchor probes(AP), which spontaneously incorporated to a lipid bilayer via hydrophobic interaction between the cholesterol moieties and the cellular membrane. In the initial state, the proposed DNA tetrahedral sensor was tethered to membrane with fluorophores quenched by QP and CD63 aptamer blocked by QP and BP. Trigger probes (TP) were add to bind to BP, resulting in the activation of the sensor. Subsequently, CD63 aptamers were specifically bound to the secreted exosomes, leading to the release of QP and concurrent fluorescence restoration of fluorophore. The intensity of the fluorescent signal in cell membrane was proportional to the amount of exosomes captured, thus realizing the real-time monitoring of the exosomes by analysis the changes of the fluorescence intensity. The experimental results showed that the sensor exhibited a good stability and a high capture efficiency for secreted exosomes. This strategy would provide a potentially useful tool for a variety of applications in biomedical research, drug discovery and tissue engineering.
  • 加载中
    1. [1]

      Kowal, J.; Tkach, M.; Théry, C. Curr. Opin. Cell Biol. 2014, 29, 116.  doi: 10.1016/j.ceb.2014.05.004

    2. [2]

      Shao, H.; Im, H.; Castro, C. M.; Breakefield, X.; Weissleder, R.; Lee, H. Chem. Rev. 2018, 118, 1917.  doi: 10.1021/acs.chemrev.7b00534

    3. [3]

      Record, M.; Subra, C.; Silventepoirot, S.; Poirot, M. Biochem. Pharmacol. 2011, 81, 1171.  doi: 10.1016/j.bcp.2011.02.011

    4. [4]

      Johnstone, R. M.; Adam, M.; Hammond, J. R.; Orr, L.; Turbide, C. J. Biol. Chem. 1987, 262, 9412.

    5. [5]

      Imjeti, N. S.; Menck, K.; Egea-Jimenez, A. L.; Lecointre, C.; Lembo, F.; Bouguenina, H.; Badache, A.; Ghossoub, R.; David, G.; Roche, S.; Zimmermann, P. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 12495.  doi: 10.1073/pnas.1713433114

    6. [6]

      Gallego-Urrea, J. A.; Tuoriniemi, J.; Hassell v, M. TrAC, Trends Anal. Chem. 2011, 30, 473.  doi: 10.1016/j.trac.2011.01.005

    7. [7]

      Wang, S.; Zhang, L.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C.; Teng, I. T.; Shi, M.; Wu, Y.; Dong, Y.; Tan, W. ACS Nano. 2017, 11, 3943.  doi: 10.1021/acsnano.7b00373

    8. [8]

      Rupert, D. L.; L sser, C.; Eldh, M.; Block, S.; Zhdanov, V. P.; Lotvall, J. O.; Bally, M.; H k, F. Anal. Chem. 2014, 86, 5929.  doi: 10.1021/ac500931f

    9. [9]

      Xu, H.; Liao, C.; Zuo, P.; Liu, Z.; Ye, B. C. Anal. Chem. 2018, 90, 13451.  doi: 10.1021/acs.analchem.8b03272

    10. [10]

      Germain, M.; Balaguer, P.; Nicolas, J. C.; Lopez, F.; Esteve, J. P.; Sukhorukov, G. B.; Winterhalter, M.; Richard-Foy, H.; Fournier, D. Biosens. Bioelectron. 2006, 21, 1566.  doi: 10.1016/j.bios.2005.07.011

    11. [11]

      Teramura, Y.; Kaneda, Y.; Totani, T.; Iwata, H. Biomaterials. 2008, 29, 1345.  doi: 10.1016/j.biomaterials.2007.11.048

    12. [12]

      Kim, H.; Shin, K.; Park, O. K.; Choi, D.; Kim, H. D.; Baik, S.; Lee, S. H.; Kwon, S. H.; Yarema, K. J.; Hong, J.; Hyeon, T.; Hwang, N. S. J. Am. Chem. Soc. 2018, 140, 1199.  doi: 10.1021/jacs.7b08440

    13. [13]

      Chanana, M.; Gliozzi, A.; Diaspro, A.; Chodnevskaja, I.; Huewel, S.; Moskalenko, V.; Ulrichs, K.; Galla, H. J.; Krol, S. Nano Letters. 2005, 5, 2605.  doi: 10.1021/nl0521219

    14. [14]

      Zhou, W. -Y.; Yang, P. -T.; Yang, R. -H.; Zheng, J. J. Instrum. Anal. 2019, 038, 154 (in Chinese).

    15. [15]

      Chen, X.; Zhang, X.; Wang, H. Y.; Chen, Z.; Wu, F. G. Langmuir. 2016, 32, 10126.  doi: 10.1021/acs.langmuir.6b02288

    16. [16]

      Matsuda, M.; Hatanaka, W.; Takeo, M.; Kim, C. W.; Niidome, T.; Yamamoto, T.; Kishimura, A.; Mori, T.; Katayama, Y. Bioconjug. Chem. 2014, 25, 2134.  doi: 10.1021/bc500465j

    17. [17]

      Altman, M. O.; Chang, Y. M.; Xiong, X.; Tan, W. Sci. Rep. 2013, 3, 3343.  doi: 10.1038/srep03343

    18. [18]

      Qiu, L.; Wimmers, F.; Weiden, J.; Heus, H. A.; Tel, J.; Figdor, C. G. Chem. Commun. 2017, 53, 8066.  doi: 10.1039/C7CC03576D

    19. [19]

      Li, J.; Xun, K.; Pei, K.; Liu, X.; Peng, X.; Du, Y.; Qiu, L.; Tan, W. J. Am. Chem. Soc. 2019, 141, 18013.  doi: 10.1021/jacs.9b04725

    20. [20]

      Świtalska, A.; Anna, D.; Agnieszka, F. W.; Juskowiak, B. Sensors 2018, 18, 2201.  doi: 10.3390/s18072201

    21. [21]

      Zeng, S.; Liu, D.; Li, C.; Yu, F.; Fan, L.; Lei, C.; Huang, Y.; Nie, Z.; Yao, S. Anal. Chem. 2018, 90, 13459.  doi: 10.1021/acs.analchem.8b03299

    22. [22]

      Qiu, L.; Wimmers, F.; Weiden, J.; Heus, H. A.; Tel, J.; Figdor, C. G. Chem. Commun. 2017, 53, 8066.  doi: 10.1039/C7CC03576D

    23. [23]

      Yuan, J.; Deng, Z.; Liu, H.; Li, X.; Li, J.; He, Y.; Qing, Z.; Yang, Y.; Zhong, S. ACS Sens. 2019, 4, 1648.  doi: 10.1021/acssensors.9b00482

    24. [24]

      Goodman, R. P.; Berry, R. M.; Turberfield, A. J. Chem. Commun. 2004, 12, 1372.

    25. [25]

      Schlapak, R.; Danzberger, J.; Armitage, D.; Morgan, D.; Ebner, A.; Hinterdorfer, P.; Pollheimer, P.; Gruber, H. J.; Sch ffler, F.; Howorka, S. Small 2012, 8, 89.  doi: 10.1002/smll.201101576

    26. [26]

      Ye, D.-K.; Zuo, X.-L.; Fan, C.-H. Prog. Chem. 2017, 01, 36 (in Chinese).

    27. [27]

      Chen, X.; Zhou, G.; Song, Ping.; Wang, J.; Gao, J.; Lu, J.; Fan, C.; Zuo, X. Anal. Chem. 2014, 86, 7337.  doi: 10.1021/ac500054x

    28. [28]

      Zhu, F.-L.; Bian, X.-J.; Tian, R.; Li, L.; Yan, J.; Liu, G. Chin. J. Anal. Chem. 2020, 4, 473 (in Chinese).

    29. [29]

      He, L.; Lu, D.; Liang, H.; Xie, S.; Zhang, X.; Liu, Q.; Yuan, Q.; Tan, W. J. Am. Chem. Soc. 2018, 140, 258.  doi: 10.1021/jacs.7b09789

    30. [30]

      Conway, J. W.; Madwar, C.; Edwardson, T. G.; McLaughlin, C. K.; Fahkoury, J.; Lennox, R. B.; Sleiman, H. F. J. Am. Chem. Soc. 2014, 136, 12987.  doi: 10.1021/ja506095n

    31. [31]

      Lin, M.; Wang, J.; Zhou, G.; Wang, J.; Wu, N.; Lu, J.; Gao, J.; Chen, X.; Shi, J.; Zuo, X.; Fan, C. Angew. Chem. Int. Ed. 2015, 54, 2151.  doi: 10.1002/anie.201410720

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    5. [5]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    13. [13]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    19. [19]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(15)
  • Abstract views(1411)
  • HTML views(393)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return