Citation: Zhang Xuhan, Deng Bowen, Fan Haidong, Huang Wenhui, Zhang Yanwei. Photo-thermochemical CO2 Splitting Based on Zinc-germanium Binary Oxide[J]. Acta Chimica Sinica, ;2020, 78(10): 1120-1126. doi: 10.6023/A20060230 shu

Photo-thermochemical CO2 Splitting Based on Zinc-germanium Binary Oxide

  • Corresponding author: Zhang Yanwei, zhangyw@zju.edu.cn
  • Received Date: 12 June 2020
    Available Online: 18 August 2020

    Fund Project: Zhejiang Provincial Natural Science Foundation LR18E060001Project supported by the National Natural Science Foundation of China (No. 51976190), Zhejiang Provincial Natural Science Foundation (LR18E060001), and the Fundamental Research Funds for the Central Universities (No. 2019FZA4013)The Fundamental Research Funds for the Central Universities 2019FZA4013The National Natural Science Foundation of China 51976190

Figures(10)

  • Using solar energy to split CO2 can realize the conversion and storage of solar energy at the same time, and alleviate the carbon emissions caused by the transitional use of fossil energy. Solar energy based photo-thermochemical reaction is a promising method for the CO2 splitting. To further study the photo-thermochemical reaction mechanism and explore the non-titanium-based catalytic materials, the ZnO/Zn2GeO4 composite material (Z/ZGO) was prepared by solution precipitation method and used for photo-thermochemical CO2 splitting. Composite semiconductor combined the advantages of the two components which made CO production reach 5.55 times that of pure ZnO. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to illustrate the crystal structure and chemical composition of the samples. The XRD pattern found that the samples crystallized well, and no obvious crystal form changes occurred after the reaction. Using SEM to observe the samples before and after the reaction, the particle size did not increase significantly and no obvious sintering phenomenon was found, which indicated that the material has good reaction stability. Photoluminescence (PL), UV-visible diffuse reflectance spectra (UV-visible DRS) and Mott-Schottky plots were used to evaluate the material's light absorption characteristics and energy band position. The band gap of ZnO and Zn2GeO4 samples were 3.27 eV and 4.56 eV, respectively, and the heterojunction was formed in the Z/ZGO sample. The presence of ZnO extended the spectral response range of Zn2GeO4, and due to the migration of photogenerated electron-hole pairs (EHPs) to ZnO, the recombination of EHPs was reduced. XPS analyses were also used to investigate change of oxygen vacancies during the reaction. The O 1s XPS spectra of the samples in the three cases (Case A:before light irradiation, Case B:after light irradiation and Case C:after reaction) were analyzed and found that the signal of the oxygen near the vacancies increased after light irradiation and decreased after reaction, which may indicate that oxygen vacancies were formed after light irradiation then consumed by CO2 in the reaction. The Zn2GeO4 sample showed the largest increase in oxygen vacancies signal after light irradiation, indicating that Zn2GeO4 had a strong ability to form oxygen vacancies. Zn2GeO4 improves the capacity of oxygen vacancies formation in the sample, and further improved the yield of photo-thermochemical CO2 splitting reaction. As a result, Z/ZGO combined the advantages of ZnO in light response and Zn2GeO4 in oxygen vacancies formation and improved the CO2 splitting yield. This research has a positive effect on expanding the photo-thermochemical material system and further deepening the photo-thermochemical reaction mechanism.
  • 加载中
    1. [1]

      Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Joule 2018, 2, 1925.  doi: 10.1016/j.joule.2018.08.016

    2. [2]

      Shahsavari, A.; Akbari, M. Renew. Sust. Energ. Rev. 2018, 90, 275.  doi: 10.1016/j.rser.2018.03.065

    3. [3]

      Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503.  doi: 10.1002/aenm.201701503

    4. [4]

      Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. Adv. Energy Mater. 2018, 8, 1701797.  doi: 10.1002/aenm.201701797

    5. [5]

      Guo, L.; Yang, Z.; Marcus, K.; Li, Z.; Luo, B.; Zhou, L.; Wang, X.; Du, Y.; Yang, Y. Energy Environ. Sci. 2018, 11, 106.  doi: 10.1039/C7EE02464A

    6. [6]

      Yan, J. Y.; Wang, C. H.; Ma, H.; Li, Y. Y.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X. T. Appl. Catal. B-Environ. 2020, 268, 118401.  doi: 10.1016/j.apcatb.2019.118401

    7. [7]

      Wang, L.; Ma, T.; Dai, S.; Ren, T.; Chang, Z.; Dou, L.; Fu, M.; Li, X. Chem. Eng. J. 2020, 389, 124426.  doi: 10.1016/j.cej.2020.124426

    8. [8]

      Sun, S.; An, Q.; Watanabe, M.; Cheng, J.; Kim, H. H.; Akbay, T.; Takagaki, A.; Ishihara, T. Appl. Catal. B-Environ. 2020, 271, 118931.  doi: 10.1016/j.apcatb.2020.118931

    9. [9]

      Thompson, W. A.; Fernandez, E. S.; Maroto-Valer, M. M. ACS Sustain. Chem. Eng. 2020, 8, 4677.  doi: 10.1021/acssuschemeng.9b06170

    10. [10]

      Carrillo, R. J.; Scheffe, J. R. Energy Fuels 2019, 33, 12871.  doi: 10.1021/acs.energyfuels.9b02714

    11. [11]

      Marxer, D.; Furler, P.; Takacs, M.; Steinfeld, A. Energy Environ. Sci. 2017, 10, 1142.  doi: 10.1039/C6EE03776C

    12. [12]

      Agrafiotis, C.; Roeb, M.; Sattler, C. Renew. Sust. Energ. Rev. 2015, 42, 254.  doi: 10.1016/j.rser.2014.09.039

    13. [13]

      Xu, C.; Hong, J.; Sui, P.; Zhu, M.; Zhang, Y.; Luo, J.-L. Cell Rep. Phys. Sci. 2020, 1, 100101.  doi: 10.1016/j.xcrp.2020.100101

    14. [14]

      Qi, Y.; Song, L.; Ouyang, S.; Liang, X.; Ning, S.; Zhang, Q.; Ye, J. Adv. Mater. 2020, 32, 1903915.  doi: 10.1002/adma.201903915

    15. [15]

      Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Liu, Y.; Ouyang, X.; Chen, Z.; Yang, H.; Yu, J.; Wang, J. Appl. Catal. B-Environ. 2020, 276, 119167.  doi: 10.1016/j.apcatb.2020.119167

    16. [16]

      Cai, Q.; Wang, F.; He, J. Z.; Dan, M.; Cao, Y. H.; Yu, S.; Zhou, Y. Appl. Surf. Sci. 2020, 517, 146198.  doi: 10.1016/j.apsusc.2020.146198

    17. [17]

      Zhao, L.; Qi, Y.; Song, L.; Ning, S.; Ouyang, S.; Xu, H.; Ye, J. Angew. Chem. Int. Ed. 2019, 58, 7708.  doi: 10.1002/anie.201902324

    18. [18]

      Zhang, Y.; Xu, C.; Chen, J.; Zhang, X.; Wang, Z.; Zhou, J.; Cen, K. Appl. Energy. 2015, 156, 223.  doi: 10.1016/j.apenergy.2015.07.028

    19. [19]

      Zhang, Y.; Chen, J.; Xu, C.; Zhou, K.; Wang, Z.; Zhou, J.; Cen, K. Int. J. Hydrog. Energy 2016, 41, 2215.  doi: 10.1016/j.ijhydene.2015.12.067

    20. [20]

      Xu, C.; Zhang, Y.; Pan, F.; Huang, W.; Deng, B.; Liu, J.; Wang, Z.; Ni, M.; Cen, K. Nano Energy 2017, 41, 308.  doi: 10.1016/j.nanoen.2017.09.023

    21. [21]

      Bhatta, S.; Nagassou, D.; Trelles, J. P. Solar Energy 2017, 142, 253.  doi: 10.1016/j.solener.2016.12.031

    22. [22]

      Li, Y.; Peng, Y. K.; Hu, L.; Zheng, J.; Prabhakaran, D.; Wu, S.; Puchtler, T. J.; Li, M.; Wong, K. Y.; Taylor, R. A.; Tsang, S. C. E. Nat Commun 2019, 10, 4421.  doi: 10.1038/s41467-019-12385-1

    23. [23]

      Bhosale, R. R. Int. J. Hydrog. Energy 2020, 45, 5760.  doi: 10.1016/j.ijhydene.2019.05.191

    24. [24]

      Carrillo, R. J.; Scheffe, J. R. Solar Energy 2017, 156, 3.  doi: 10.1016/j.solener.2017.05.032

    25. [25]

      Ebadi, A.; Mozaffari, M. J. Nanostructures 2020, 10, 1.

    26. [26]

      Pei, L.; Xu, Y.; Liu, J.; Wu, J.; Han, Y.; Zhang, X. J. Am. Ceram. Soc. 2019, 102, 6517.  doi: 10.1111/jace.16605

    27. [27]

      Wang, Y.; Zheng, M.; Zhao, H.; Qin, H.; Fan, W.; Zhao, X. Phys. Chem. Chem. Phys. 2020, 22, 10265.  doi: 10.1039/D0CP01308K

    28. [28]

      Zhang, H.; Chen, Y.; Zhu, X.; Zhou, H.; Yao, Y.; Li, X. Int. J. Energy Res. 2019, 43, 5013.  doi: 10.1002/er.4643

    29. [29]

      Xu, C.; Huang, W.; Li, Z.; Deng, B.; Zhang, Y.; Ni, M.; Cen, K. ACS Catal. 2018, 8, 6582.  doi: 10.1021/acscatal.8b00272

    30. [30]

      Ghoussoub, M.; Xia, M. K.; Duchesne, P. N.; Segal, D.; Ozin, G. Energy Environ. Sci. 2019, 12, 1122.  doi: 10.1039/C8EE02790K

    31. [31]

      Huang, D.; Yan, X.; Yan, M.; Zeng, G.; Zhou, C.; Wan, J.; Cheng, M.; Xue, W. ACS Appl. Mater. Interfaces 2018, 10, 21035.  doi: 10.1021/acsami.8b03620

    32. [32]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159.  doi: 10.1021/acs.chemrev.6b00075

    33. [33]

      Xu, C.; Lin, J.; Pan, F.; Deng, B.; Wang, Z.; Zhou, J.; Chen, Y.; Ma, J.; Gu, Z.; Zhang, Y. Acta Chim. Sinica 2017, 75, 699.
       

    34. [34]

      Kumar, P.; Kumar, A.; Rizvi, M. A.; Moosvi, S. K.; Krishnan, V.; Duvenhage, M. M.; Roos, W. D.; Swart, H. C. Appl. Surf. Sci. 2020, 514, 145930.  doi: 10.1016/j.apsusc.2020.145930

    35. [35]

      Tong, Z. K.; Fang, S.; Zheng, H.; Zhang, X. G. Acta Chim. Sinica 2016, 74, 185.
       

    36. [36]

      Zhou, J.; Zhang, W.; Zhao, H.; Tian, J.; Zhu, Z.; Lin, N.; Qian, Y. ACS Appl. Mater. Interfaces 2019, 11, 22371.  doi: 10.1021/acsami.9b05003

    37. [37]

      Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Appl. Catal. B-Environ. 2020, 268, 118380.  doi: 10.1016/j.apcatb.2019.118380

    38. [38]

      Adhikari, S.; Kim, D.-H. Appl. Surf. Sci. 2020, 511, 145595.  doi: 10.1016/j.apsusc.2020.145595

    39. [39]

      Docao, S.; Koirala, A. R.; Kim, M. G.; Hwang, I. C.; Song, M. K.; Yoon, K. B. Energy Environ. Sci. 2017, 10, 628.  doi: 10.1039/C6EE02974D

    40. [40]

      Long, X.; Gao, L.; Li, F.; Hu, Y.; Wei, S.; Wang, C.; Wang, T.; Jin, J.; Ma, J. Appl. Catal. B 2019, 257, 117813.  doi: 10.1016/j.apcatb.2019.117813

    41. [41]

      Mandal, S.; Ananthakrishnan, R. Inorg. Chem. 2020, 59, 7681.  doi: 10.1021/acs.inorgchem.0c00666

    42. [42]

      Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694.  doi: 10.1002/adma.201601694

    43. [43]

      Mei, Q. F.; Zhang, F. Y.; Wang, N.; Lu, W. S.; Su, X. T.; Wang, W.; Wu, R. L. Chin. J. Inorg. Chem. 2019, 35, 1321.

    44. [44]

      Luo, X.; Ke, Y.; Yu, L.; Wang, Y.; Homewood, K. P.; Chen, X.; Gao, Y. Appl. Surf. Sci. 2020, 515, 145970.  doi: 10.1016/j.apsusc.2020.145970

    45. [45]

      Du, S.-Q.; Yuan, Y.-F.; Tu, W.-X. Acta Phys.-Chim. Sin. 2013, 29, 2062.

    46. [46]

      Zhang, X.; Zhang, L.; Deng, B.; Jin, J.; Xu, C.; Zhang, Y. Catal. Commun. 2020, 138, 105955.  doi: 10.1016/j.catcom.2020.105955

    47. [47]

      Tien, L.-C.; Yang, F.-M.; Huang, S.-C.; Fan, Z.-X.; Chen, R.-S. J. Appl. Phys. 2018, 124, 174503.  doi: 10.1063/1.5054915

    48. [48]

      Kim, D. Y.; Yoon, T.; Jang, Y. J.; Lee, J. H.; Na, Y.; Lee, B. J.; Lee, J. S.; Kim, K. S. J. Phys. Chem. C 2019, 123, 14573.  doi: 10.1021/acs.jpcc.9b03728

    49. [49]

      Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xi, Z.; Wang, J.; Ke, X.-k.; Sheng, G.; Yan, S.; Zou, Z. ACS Catal. 2018, 8, 516.  doi: 10.1021/acscatal.7b02952

    50. [50]

      Liang, Y. C.; Lin, T. Y. Nanoscale Res. Lett. 2014, 9, 344.  doi: 10.1186/1556-276X-9-344

    51. [51]

      Xiao, F.-X. ACS Appl. Mater. Interfaces 2012, 4, 7052.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    8. [8]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    11. [11]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(6)
  • Abstract views(1177)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return