Citation: Sun Qi, Xiao Feng-Shou. Exploration of Porous Organic Polymers as a Platform for Biomimetic Catalysis[J]. Acta Chimica Sinica, ;2020, 78(9): 827-832. doi: 10.6023/A20060227 shu

Exploration of Porous Organic Polymers as a Platform for Biomimetic Catalysis

  • Corresponding author: Xiao Feng-Shou, fsxiao@zju.edu.cn
  • Received Date: 12 June 2020
    Available Online: 15 July 2020

    Fund Project: the Fundamental Research Funds for the Central Universities 17221012001Project supported by the Fundamental Research Funds for the Central Universities (No. 17221012001) and the National Natural Science Foundation of China (No. 21720102001)the National Natural Science Foundation of China 21720102001

Figures(9)

  • Nature has served as a dominant source of inspiration in the area of chemistry, serving as prototypes for the design of materials with proficient performance. In this account, we present our effort to explore porous organic polymers (POPs) as a platform for the construction of biomimetic catalysts to enable new technologies to achieve efficient conversions. For each aspect, we firstly describe the chemical basis of nature, followed by presenting the principles and design strategies involved for functionalizing POPs along with a summary of critical requirements for materials, culminating in a demonstration of unique features of POPs. Our endeavors of using POPs to address the fundamental scientific problems related to biomimetic catalysis are then presented to show their enormous potential and capabilities for a wide range of catalytic transformations. To conclude, a personal perspective on the challenges and opportunities in this emerging field are presented.
  • 加载中
    1. [1]

      Rothenberg, G. Catalysis:Concepts and Green Applications, Wiley-VCH, Weinheim, Germany, 2011.

    2. [2]

    3. [3]

      Benkovic, S. J.; Hammes-Schiffer, S. Science 2003, 301, 1196.

    4. [4]

    5. [5]

      Hu, K.; Tang, Y.; Cui, J.; Gong, Q.; Hu, C.; Wang, S.; Dong, K.; Meng, X.; Sun, Q.; Xiao, F.-S. Chem. Commun. 2019, 55, 9180.

    6. [6]

      (a) Sun, Q.; Ma, S.; Dai, Z.; Meng, X.; Xiao, F.-S. J. Mater. Chem. A 2015, 3, 23871;(b) Sun, Q.; Jin, Y.; Aguila, B.; Meng, X.; Ma, S.; Xiao, F.-S. ChemSusChem 2017, 10, 1160.

    7. [7]

      Sun, Q.; Wang, S.; Aguila, B.; Meng, X.; Ma, S.; Xiao, F.-S. Nat. Commun. 2018, 9, 3236.

    8. [8]

      Sun, Q.; Tang, Y.; Aguila, B.; Wang, S.; Xiao, F.-S.; Thallapally, P. K.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Angew. Chem. Int. Ed. 2019, 58, 8670.

    9. [9]

      Nestl, B. M.; Hauer, B. ACS Catal. 2014, 4, 3201.

    10. [10]

      Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675.

    11. [11]

      Sun, Q.; Jiang, M.; Shen, Z.; Jin, Y.; Pan, S.; Wang, L.; Meng, X.; Chen, W.; Ding, Y.; Li, J.; Xiao, F.-S. Chem. Commun. 2014, 50, 11844.

    12. [12]

      Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Catal. Today 2017, 298, 40.

    13. [13]

      Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F.-S. J. Am. Chem. Soc. 2015, 137, 5204.

    14. [14]

      Dong, K.; Sun, Q.; Tang, Y.; Shan, C.; Aguila, B.; Wang, S.; Meng, X.; Ma, S.; Xiao, F.-S. Nat. Commun. 2019, 10, 3059.

    15. [15]

      Chen, F.; Wang, S.; Sun, Q.; Xiao, F.-S. ChemCatChem 2020, 12, 3285.

    16. [16]

      Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Mater. 2017, 29, 5720.

    17. [17]

      Dai, Z.; Sun, Q.; Chen, F.; Pan, S.; Wang, L.; Meng, X.; Li, J.; Xiao, F.-S. ChemCatChem 2016, 8, 812.

    18. [18]

      (a) Sun, Q.; He, H.; Gao, W.-Y.; Aguila, B.; Wojtas, L.; Dai, Z.; Li, J.; Chen, Y.-S.; Xiao, F.-S.; Ma, S. Nat. Commun. 2016, 7, 13300;(b) Sun, Q.; Aguila, B.; Perman, J.; Butts, T.; Xiao, F.-S.; Ma, S. Chem 2018, 4, 1726.

    19. [19]

      Su, B.; Tian, Y.; Jiang, L. J. Am. Chem. Soc. 2016, 138, 1727.

    20. [20]

      Zhang, Y.; Wei, S.; Liu, F.; Du, Y.; Liu, S.; Ji, Y.; Yokoi, T.; Tatsumi, T.; Xiao, F.-S. Nano Today 2009, 4, 135.

    21. [21]

      Sun, Q.; Aguila, B.; Verma, G.; Liu, X.; Dai, Z.; Deng, F.; Meng, X.; Xiao, F.-S.; Ma, S. Chem 2016, 1, 628.

    22. [22]

      Sun, Q.; Jin, Y.; Zhu, L.; Wang, L.; Meng, X.; Xiao, F.-S. Nano Today 2013, 8, 342.

    23. [23]

      (a) Liu, F.; Meng, X.; Zhang, Y.; Ren, L.; Nawaz, F.; Xiao, F.-S. J. Catal. 2010, 271, 52;(b) Liu, F.; Kong, W.; Qi, C.; Zhu, L.; Xiao, F.-S. ACS Catal. 2012, 2, 565;(c) Liu, F.; Wang, L.; Sun, Q.; Zhu, L.; Meng, X.; Xiao, F.-S. J. Am. Chem. Soc. 2012, 134, 16948;(d) Liu, F.; Huang, K.; Zheng, A.; Xiao, F.-S.; Dai, S. ACS Catal. 2018, 8, 372.

    24. [24]

      Wang, L.; Wang, H.; Liu, F.; Zheng, A.; Zhang, J.; Sun, Q.; Lewis, J. P.; Zhu, L. F.; Meng, X.; Xiao, F.-S. ChemSusChem 2014, 7, 402.

    25. [25]

      Sun, Q.; Hu, K.; Leng, K.; Yi, X.; Aguila, B.; Sun, Y.; Zheng, A.; Meng, X.; Ma, S.; Xiao, F.-S. J. Mater. Chem. A 2018, 6, 18712.

    26. [26]

      (a) Liu, F.; Li, W.; Sun, Q.; Zhu, L.; Meng, X.; Guo, Y.-H.; Xiao, F.-S. ChemSusChem 2011, 4, 1059;(b) Zhang, Y.-L.; Liu, S.; Liu, S.; Liu, F.; Zhang, H.; He, Y.; Xiao, F.-S. Cat. Commun. 2011, 12, 1212.

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    3. [3]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    18. [18]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(26)
  • Abstract views(2795)
  • HTML views(539)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return