Citation: Sun Lian, Wang Honglei, Yu Jinshan, Zhou Xingui. Recent Progress on Proton-Conductive Metal-Organic Frameworks and Their Proton Exchange Membranes[J]. Acta Chimica Sinica, ;2020, 78(9): 888-900. doi: 10.6023/A20060221 shu

Recent Progress on Proton-Conductive Metal-Organic Frameworks and Their Proton Exchange Membranes

  • Corresponding author: Zhou Xingui, zhouxinguilmy@163.com
  • Received Date: 9 June 2020
    Available Online: 30 July 2020

    Fund Project: the National Natural Science Foundation of China 51502343the National Natural Science Foundation of China 91426304Project supported by the National Natural Science Foundation of China (Nos. 91426304, 51372274, 51502343).the National Natural Science Foundation of China 51372274

Figures(14)

  • Proton exchange membranes (PEMs) are important components for novel fuel cells. A significant effort has been made by researchers towards proton conductive materials and membranes, some of which have been successfully commercialized. However, commercial perfluorosulfonic acid membranes like Nafion suffer key issues which limit their large-scale applications in a wide temperature range, including high cost and low operation temperature. Therefore, it is highly desirable to prepare new-type PEMs possessing high proton conductivity, thermal and chemical stability, water uptake and excellent durability. Metal organic frameworks (MOFs) are attractive candidates for proton exchange membranes due to their high porosity, ordering pore structures and excellent designability. This review focuses on the recent progress on proton-conductive MOF structures and their proton exchange membranes. In the first section, the authors briefly introduce the proton conducting mechanism of MOFs and their testing methods. The Grotthuss mechanism refers to the proton transferring process in a continuous and long-range hydrogen network, whereas the Vehicular mechanism involves in the diffusion of proton carrier molecules. Then in the next section, the authors summarize the progress on bulk MOFs proton conductors. According to the work condition, proton-conducting MOFs can be divided into two types, namely working under humid and anhydrous environment. These works show the potential of proton-conductive MOFs to be applied in a wide temperature range, and some of them even have reached a relatively high conductivity larger than 10-2 S·cm-1, comparable with Nafion. In the third section, a review on the MOFs-based proton exchange membranes is shown. Researchers have proven that MOFs thin films have huge potential on proton conduction. Nevertheless, most of the MOFs-based PEMs are still mixed matrix membrane (MMM) structure. In order to boost the performance of MMMs-type MOFs-based PEMs, several strategies can be applied such as modifying MOF with functional groups, using 1D/2D MOFs structure and introducing the third phase into membranes. Last, the authors discuss the current issues and perspectives on MOFs proton conductors and their PEMs.
  • 加载中
    1. [1]

      Escorihuela, J.; Narducci, R.; Compa, V.; Costantino, F. Adv. Mater. Interfaces 2019, 6, 1801146.
       

    2. [2]

      Haubold, H. G.; Vad, T.; Jungbluth, H.; Hiller, P. Electrochim. Acta 2001, 46, 1559.  doi: 10.1016/S0013-4686(00)00753-2

    3. [3]

      Jaafar, J.; Nordin, M.; Hadi, N. A.; Ismail, A. F.; Othman, M. H. D.; A Rahman, M.; Aziz, F. J. Membr. Sci. Res. 2019, 5, 65.
       

    4. [4]

      Fang, J.; Shen, P. K. J. Membr. Sci. 2006, 285, 317.  doi: 10.1016/j.memsci.2006.08.037

    5. [5]

      Zhang, Y.; Zheng, L.; Liu, B.; Wang, H.; Shi, H. J. Membr. Sci. 2019, 584, 173.  doi: 10.1016/j.memsci.2019.04.073

    6. [6]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).
       

    7. [7]

      Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
       

    8. [8]

      Dai, M. M.; Wang, J.; Li, L. G.; Wang, Q.; Liu, M. N.; Zhang, Y. G. Acta Chim. Sinica 2020, 78, 355(in Chinese).
       

    9. [9]

      He, T.; Zhang, Y.-Z.; Wu, H.; Kong, X.-J.; Liu, X.-M.; Xie, L.-H.; Dou, Y.; Li, J.-R. ChemPhysChem 2017, 18, 3245.  doi: 10.1002/cphc.201700650

    10. [10]

      Kanda, S.; Yamashita, K.; Ohkawa, K. Bull. Chem. Soc. Jpn. 1979, 52, 3296.  doi: 10.1246/bcsj.52.3296

    11. [11]

      Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Science 2013, 341, 354.  doi: 10.1126/science.1239872

    12. [12]

      Ye, Y.; Gong, L.; Xiang, S.; Zhang, Z.; Chen, B. Adv. Mater. 2020, 32, 1907090.  doi: 10.1002/adma.201907090

    13. [13]

      Lim, D. W.; Kitagawa, H. Chem. Rev. 2020, 120, 8416.  doi: 10.1021/acs.chemrev.9b00842

    14. [14]

      Li, W.-H.; Deng, W.-H.; Wang, G.-E.; Xu, G. EnergyChem 2020, 2, 100029.  doi: 10.1016/j.enchem.2020.100029

    15. [15]

      Agmon, N. Chem. Phys. Lett. 1995, 244, 456.  doi: 10.1016/0009-2614(95)00905-J

    16. [16]

      Kreuer, K. D.; Rabenau, A.; Weppner, W. Angew. Chem. Int. Ed. 1982, 21, 208.
       

    17. [17]

      Zhang, J.; Bai, H.-J.; Ren, Q.; Luo, H.-B.; Ren, X.-M.; Tian, Z.-F.; Lu, S. ACS Appl. Mater. Interfaces 2018, 10, 28656.  doi: 10.1021/acsami.8b09070

    18. [18]

      Wang, Z. T.; Li, H.; Yan, S. C.; Fang, Q. R. Acta Chim. Sinica 2020, 78, 63(in Chinese).
       

    19. [19]

      Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa, S. J. Am. Chem. Soc. 2012, 134, 12780.
       

    20. [20]

      Liu, M.; Chen, L.; Lewis, S.; Chong, S. Y.; Little, M. A.; Hasell, T.; Aldous, I. M.; Brown, C. M.; Smith, M. W.; Morrison, C. A.; Hardwick, L. J.; Cooper, A. I. Nat. Commun. 2016, 7, 12750.  doi: 10.1038/ncomms12750

    21. [21]

      Zhang, K.; Xie, X.; Li, H.; Gao, J.; Nie, L.; Pan, Y.; Xie, J.; Tian, D.; Liu, W.; Fan, Q. Adv. Mater. 2017, 29, 1701804.  doi: 10.1002/adma.201701804

    22. [22]

      Wu, L.; Yang, Y.; Ye, Y.; Yu, Z.; Song, Z.; Chen, S.; Chen, L.; Zhang, Z.; Xiang, S. ACS Appl. Energy Mater. 2018, 1, 5068.  doi: 10.1021/acsaem.8b01102

    23. [23]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese).
       

    24. [24]

      Yang, F.; Huang, H.; Wang, X.; Li, F.; Gong, Y.; Zhong, C.; Li, J.-R. Cryst. Growth Des. 2015, 15, 5827.  doi: 10.1021/acs.cgd.5b01190

    25. [25]

      Losch, P.; Joshi, H. R.; Vozniuk, O.; Grünert, A.; Ochoa-Hernández, C.; Jabraoui, H.; Badawi, M.; Schmidt, W. J. Am. Chem. Soc. 2018, 140, 17790.  doi: 10.1021/jacs.8b11588

    26. [26]

      Sun, Z.; Yu, S.; Zhao, L.; Wang, J.; Li, Z.; Li, G. Chem.-Eur. J. 2018, 24, 10829.  doi: 10.1002/chem.201801844

    27. [27]

      Yamada, T.; Sadakiyo, M.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 3144.  doi: 10.1021/ja808681m

    28. [28]

      Yang, F.; Xu, G.; Dou, Y.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J.-R.; Chen, B. Nat. Energy 2017, 2, 877.  doi: 10.1038/s41560-017-0018-7

    29. [29]

      Tang, Q.; Yang, Y.-L.; Zhang, N.; Liu, Z.; Zhang, S.-H.; Tang, F.-S.; Hu, J.-Y.; Zheng, Y. Z.; Liang, F. P. Inorg. Chem. 2018, 57, 9020.  doi: 10.1021/acs.inorgchem.8b01023

    30. [30]

      Wu, H.; Yang, F.; Lv, X. L.; Wang, B.; Zhang, Y.-Z.; Zhao, M. J.; Li, J. R. J. Mater. Chem. A 2017, 5, 14525.  doi: 10.1039/C7TA03917D

    31. [31]

      Feng, L.; Wang, H. S.; Xu, H. L.; Huang, W. T.; Zeng, T. Y.; Cheng, Q. R.; Pan, Z. Q.; Zhou, H. Chem. Commun. 2019, 55, 1762.  doi: 10.1039/C8CC08706G

    32. [32]

      Zhang, F.-M.; Dong, L.-Z.; Qin, J.-S.; Guan, W.; Liu, J.; Li, S.-L.; Lu, M.; Lan, Y. Q.; Su, Z. M.; Zhou, H. C. J. Am. Chem. Soc. 2017, 139, 6183.  doi: 10.1021/jacs.7b01559

    33. [33]

      Horike, S.; Chen, W.; Itakura, T.; Inukai, M.; Umeyama, D.; Asakura, H.; Kitagawa, S. Chem. Commun. 2014, 50, 10241.  doi: 10.1039/C4CC04370G

    34. [34]

      Liu, L.; Yao, Z.; Ye, Y.; Liu, C.; Lin, Q.; Chen, S.; Xiang, S.; Zhang, Z. ACS Appl. Mater. Interfaces 2019, 11, 16490.  doi: 10.1021/acsami.8b22327

    35. [35]

      Liu, R.; Zhao, L.; Yu, S.; Liang, X.; Li, Z.; Li, G. Inorg. Chem. 2018, 57, 11560.  doi: 10.1021/acs.inorgchem.8b01606

    36. [36]

      Chen, H.; Han, S. Y.; Liu, R. H.; Chen, T. F.; Bi, K. L.; Liang, J. B.; Deng, Y. H.; Wan, C. Q. J. Power Sources 2018, 376, 168.  doi: 10.1016/j.jpowsour.2017.11.089

    37. [37]

      Meng, X.; Wei, M.-J.; Wang, H. N.; Zang, H. Y.; Zhou, Z. Y. Dalton Trans. 2018, 47, 1383.  doi: 10.1039/C7DT03932H

    38. [38]

      Gui, D.; Dai, X.; Tao, Z.; Zheng, T.; Wang, X.; Silver, M. A.; Shu, J.; Chen, L.; Wang, Y.; Zhang, T. J. Am. Chem. Soc. 2018, 140, 6146.  doi: 10.1021/jacs.8b02598

    39. [39]

      Shigematsu, A.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 2034.  doi: 10.1021/ja109810w

    40. [40]

      Sarango-Ramírez, M. K.; Lim, D.-W.; Kolokolov, D. I.; Khudozhitkov, A. E.; Stepanov, A. G.; Kitagawa, H. J. Am. Chem. Soc. 2020, 142, 6861.  doi: 10.1021/jacs.0c00303

    41. [41]

      Bao, S. S.; Shimizu, G. K.; Zheng, L. M. Coord. Chem. Rev. 2019, 378, 577.  doi: 10.1016/j.ccr.2017.11.029

    42. [42]

      Taylor, J. M.; Mah, R. K.; Moudrakovski, I. L.; Ratcliffe, C. I.; Vaidhyanathan, R.; Shimizu, G. K. H. J. Am. Chem. Soc. 2010, 132, 14055.  doi: 10.1021/ja107035w

    43. [43]

      Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. H. J. Am. Chem. Soc. 2013, 135, 1193.  doi: 10.1021/ja310435e

    44. [44]

      Ramaswamy, P.; Wong, N. E.; Gelfand, B. S.; Shimizu, G. K. H. J. Am. Chem. Soc. 2015, 137, 7640.  doi: 10.1021/jacs.5b04399

    45. [45]

      Luo, Y. H.; Yi, L. Q.; Lu, J. N.; Dong, L.-Z.; Lan, Y. Q. CrystEngComm 2018, 20, 6077.  doi: 10.1039/C8CE00693H

    46. [46]

      Li, X. M.; Dong, L. Z.; Li, S. L.; Xu, G.; Liu, J.; Zhang, F. M.; Lu, L. S.; Lan, Y. Q. ACS Energy Lett. 2017, 2, 2313.  doi: 10.1021/acsenergylett.7b00560

    47. [47]

      Li, R.; Wang, S. H.; Chen, X. X.; Lu, J.; Fu, Z. H.; Li, Y.; Xu, G.; Zheng, F. K.; Guo, G. C. Chem. Mater. 2017, 29, 2321.  doi: 10.1021/acs.chemmater.6b05497

    48. [48]

      Nagarkar, S. S.; Unni, S. M.; Sharma, A.; Kurungot, S.; Ghosh, S. K. Angew. Chem. 2014, 126, 2676.  doi: 10.1002/ange.201309077

    49. [49]

      Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H. Nat. Chem. 2009, 1, 705.  doi: 10.1038/nchem.402

    50. [50]

      Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nat. Mater. 2009, 8, 831.  doi: 10.1038/nmat2526

    51. [51]

      Ye, Y.; Guo, W.; Wang, L.; Li, Z.; Song, Z.; Chen, J.; Zhang, Z.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2017, 139, 15604.  doi: 10.1021/jacs.7b09163

    52. [52]

      Sun, X. L.; Deng, W. H.; Chen, H.; Han, H. L.; Taylor, J. M.; Wan, C. Q.; Xu, G. Chem.-Eur. J. 2017, 23, 1248.  doi: 10.1002/chem.201605215

    53. [53]

      Hermes, S.; Schrder, F.; Chelmowski, R.; Wll, C.; Fischer, R. A. J. Am. Chem. Soc. 2005, 127, 13744.  doi: 10.1021/ja053523l

    54. [54]

      Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135, 7438.  doi: 10.1021/ja402727d

    55. [55]

      Kim, S.; Wang, H.; Lee, Y. M. Angew. Chem. Int. Ed. 2019, 58, 17512.  doi: 10.1002/anie.201814349

    56. [56]

      Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Angew. Chem. Int. Ed. 2017, 56, 9292.  doi: 10.1002/anie.201701109

    57. [57]

      Niluroutu, N.; Pichaimuthu, K.; Sarmah, S.; Dhanasekaran, P.; Shukla, A.; Unni, S. M.; Bhat, S. D. New J. Chem. 2018, 42, 16758.  doi: 10.1039/C8NJ03459A

    58. [58]

      Guo, Y.; Jiang, Z.; Ying, W.; Chen, L.; Liu, Y.; Wang, X.; Jiang, Z.-J.; Chen, B.; Peng, X. Adv. Mater. 2018, 30, 1705155.  doi: 10.1002/adma.201705155

    59. [59]

      Cai, Y. Y.; Yang, Q.; Zhu, Z. Y.; Sun, Q. H.; Zhu, A. M.; Zhang, Q. G.; Liu, Q. L. J. Membr. Sci. 2019, 590, 117277.  doi: 10.1016/j.memsci.2019.117277

    60. [60]

      Han, R.; Wu, P. ACS Appl. Mater. Interfaces 2018, 10, 18351.  doi: 10.1021/acsami.8b04311

    61. [61]

      Wang, L.; Deng, N.; Wang, G.; Ju, J.; Cheng, B.; Kang, W. ACS Appl. Mater. Interfaces 2019, 11, 39979.  doi: 10.1021/acsami.9b13496

    62. [62]

      Rao, Z.; Feng, K.; Tang, B.; Wu, P. J. Membr. Sci. 2017, 533, 160.  doi: 10.1016/j.memsci.2017.03.031

    63. [63]

      Bai, Z.; Liu, S.; Chen, P.; Cheng, G.; Wu, G.; Liu, Y. Nanotechnology 2020, 31, 125702.  doi: 10.1088/1361-6528/ab5d5e

    64. [64]

      Bai, Z.; Liu, S.; Cheng, G.; Wu, G.; Liu, Y. Micropor. Mesopor. Mat. 2020, 292, 109763.  doi: 10.1016/j.micromeso.2019.109763

    65. [65]

      Yang, L.; Tang, B.; Wu, P. J. Mater. Chem. A 2015, 3, 15838.  doi: 10.1039/C5TA03507D

    66. [66]

      Ru, C.; Gu, Y.; Na, H.; Li, H.; Zhao, C. ACS Appl. Mater. Interfaces 2019, 11, 31899.  doi: 10.1021/acsami.9b09183

    67. [67]

      Zhang, F.; Zhang, T.; Zou, X.; Liang, X.; Zhu, G.; Qu, F. Solid State Ionics 2017, 301, 125.  doi: 10.1016/j.ssi.2017.01.022

    68. [68]

      Rao, Z.; Tang, B.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 22597.  doi: 10.1021/acsami.7b05969

    69. [69]

      Dong, X.-Y.; Wang, J.-H.; Liu, S.-S.; Han, Z.; Tang, Q.-J.; Li, F.-F.; Zang, S.-Q. ACS Appl. Mater. Interfaces 2018, 10, 38209.  doi: 10.1021/acsami.8b12846

    70. [70]

      Adams, R.; Carson, C.; Ward, J.; Tannenbaum, R.; Koros, W. Micropor. Mesopor. Mat. 2010, 131, 13.  doi: 10.1016/j.micromeso.2009.11.035

    71. [71]

      Sabetghadam, A.; Liu, X.; Gottmer, S.; Chu, L.; Gascon, J.; Kapteijn, F. J. Membr. Sci. 2019, 570-571, 226.

    72. [72]

      Liu, Y.; Liu, G.; Zhang, C.; Qiu, W.; Yi, S.; Chernikova, V.; Chen, Z.; Belmabkhout, Y.; Shekhah, O.; Eddaoudi, M.; Koros, W. Adv. Sci. 2018, 5, 1800982.  doi: 10.1002/advs.201800982

    73. [73]

      Cao, L.; Tao, K.; Huang, A.; Kong, C.; Chen, L. Chem. Commun. 2013, 49, 8513.  doi: 10.1039/c3cc44530e

    74. [74]

      Anjum, M. W.; Vermoortele, F.; Khan, A. L.; Bueken, B.; De Vos, D. E.; Vankelecom, I. F. J. ACS Appl. Mater. Interfaces 2015, 7, 25193.  doi: 10.1021/acsami.5b08964

    75. [75]

      Ordoez, M. J. C.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. J. Membr. Sci. 2010, 361, 28.  doi: 10.1016/j.memsci.2010.06.017

    76. [76]

      Dorosti, F.; Omidkhah, M.; Abedini, R. Chem. Eng. Res. Des. 2014, 92, 2439.  doi: 10.1016/j.cherd.2014.02.018

    77. [77]

      Duan, L.; Wang, Y.; Zhang, Y.; Liu, J. Appl. Surf. Sci. 2015, 355, 436.  doi: 10.1016/j.apsusc.2015.07.127

    78. [78]

      Li, W.; Samarasinghe, S. A. S. C.; Bae, T.-H. J. Ind. Eng. Chem. 2018, 67, 156.  doi: 10.1016/j.jiec.2018.06.026

    79. [79]

      Ru, C.; Li, Z.; Zhao, C.; Duan, Y.; Zhuang, Z.; Bu, F.; Na, H. ACS Appl. Mater. Interfaces 2018, 10, 7963.  doi: 10.1021/acsami.7b17299

    80. [80]

      Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chem. Commun. 2013, 49, 9449.  doi: 10.1039/c3cc46105j

    81. [81]

      Peng, X.; Ye, L.; Ding, Y.; Yi, L.; Zhang, C.; Wen, Z. Appl. Catal., B 2020, 260, 118152.  doi: 10.1016/j.apcatb.2019.118152

    82. [82]

      Liu, S.; Sang, X.; Wang, L.; Zhang, J.; Song, J.; Han, B. Electrochim. Acta 2017, 257, 243.  doi: 10.1016/j.electacta.2017.10.084

    83. [83]

      Zhang, B.; Cao, Y.; Li, Z.; Wu, H.; Yin, Y.; Cao, L.; He, X.; Jiang, Z. Electrochim. Acta 2017, 240, 186.  doi: 10.1016/j.electacta.2017.04.087

    84. [84]

      Wu, B.; Lin, X.; Ge, L.; Wu, L.; Xu, T. Chem. Commun. 2013, 49, 143.  doi: 10.1039/C2CC37045J

    85. [85]

      Liu, W.; Wang, S.; Xiao, M.; Han, D.; Meng, Y. Chem. Commun. 2012, 48, 3415.  doi: 10.1039/c2cc16952e

    86. [86]

      Liu, X.; Yang, Z.; Zhang, Y.; Li, C.; Dong, J.; Liu, Y.; Cheng, H. Int. J. Hydrogen Energy 2017, 42, 10275.  doi: 10.1016/j.ijhydene.2017.02.128

    87. [87]

      Wu, B.; Pan, J.; Ge, L.; Wu, L.; Wang, H.; Xu, T. Sci. Rep. 2014, 4, 4334.
       

    88. [88]

      Choi, B. G.; Huh, Y. S.; Park, Y. C.; Jung, D. H.; Hong, W. H.; Park, H. Carbon 2012, 50, 5395.  doi: 10.1016/j.carbon.2012.07.025

    89. [89]

      Enotiadis, A.; Angjeli, K.; Baldino, N.; Nicotera, I.; Gournis, D. Small 2012, 8, 3338.  doi: 10.1002/smll.201200609

    90. [90]

      Wu, B. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2015 (in Chinese).

    91. [91]

      Sun, H.; Tang, B.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 26077.  doi: 10.1021/acsami.7b07651

    92. [92]

      Ahmadian-Alam, L.; Mahdavi, H. Renew. Energ. 2018, 126, 630.  doi: 10.1016/j.renene.2018.03.075

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(124)
  • Abstract views(4834)
  • HTML views(1228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return