Citation: Zhao Ruotong, Han Tianhao, Sun Dayin, Shan Dan, Liu Zhengping, Liang Fuxin. Multifunctional Fe3O4@SiO2Janus Particles[J]. Acta Chimica Sinica, ;2020, 78(9): 945-954. doi: 10.6023/A20060208 shu

Multifunctional Fe3O4@SiO2Janus Particles

  • Corresponding author: Liu Zhengping, lzp@bnu.edu.cn Liang Fuxin, liangfuxin@tsinghua.edu.cn
  • Received Date: 4 June 2020
    Available Online: 13 July 2020

    Fund Project: the National Natural Science Foundation of China 51622308the National Natural Science Foundation of China 51673119Project supported by the National Natural Science Foundation of China (Nos. 51673119, 51622308)

Figures(11)

  • Fe3O4@SiO2 particles were synthesized by a solvothermal method and a classical stber method. Superparamagnetic Fe3O4 was the core, and a sol-gel coating of SiO2 was the shell. After the SiO2 surface was modified with amino groups, benzaldehyde was conjugated to the particles by a Schiff base reaction. The Fe3O4@SiO2 particles were emulsified in paraffin/water as a solid emulsifier to obtain an oil-in-water Pickering emulsion. After cooling the paraffin, the particles were fixed on the surface of the emulsion droplets. The particles were etched in ammonium fluoride aqueous solution, and Janus particles with different structures could be obtained by adjusting the etching time. Via the in situ growth of metal Pt or Ag nanoparticles, superparamagnetic Fe3O4@SiO2-Pt or Fe3O4@SiO2-Ag Janus particles were obtained. The movement of Fe3O4@SiO2-Pt Janus particles was observed due to the catalytic decomposition of hydrogen peroxide aqueous solution. It was found that in the short term, there was a linear motion, while in the long term, the motion direction and trajectory were random. Fe3O4@SiO2-Ag Janus particles were used as magnetic solid surfactants to stabilize the emulsions and catalyze the nitro reduction. About 60% of the surficial area of the Janus particles was modified by phenyl groups, while the remaining 40% was covered with Ag nanoparticles. Under the premise of maintaining the Janus balance, the whole particle became more hydrophobic, which was conducive to the formation of the water-in-oil emulsion. In addition, the Ag side of the Janus particles was towards the aqueous phase, and the opposite hydrophobic side was towards the oil phase. The Janus particles possessed a fixed orientation assembly at the oil-water interface. The assemble membrane possessed Janus characteristics, and it facilitated the stable dispersion of the emulsion and the catalysis. The method has the advantages of a simple principle, capability for mass production, universality and versatility. It is expected that Janus particles will be used to more precisely regulate the zoning with different functional substances.
  • 加载中
    1. [1]

      De Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645.  doi: 10.1103/RevModPhys.64.645

    2. [2]

      Jiang, S.; Granick, S. Janus Particles Synthesis, Self-assembly and Applications, RSC, London, England, 2012.
       

    3. [3]

      Shi, S. Y.; Zhang, L. L.; Zhang, G. L.; Song, X. M.; Sun, D. Y.; Liang, F. X.; Yang, Z. Z. Macromolecules 2020, 53, 2228.  doi: 10.1021/acs.macromol.0c00166

    4. [4]

      Xiang, D.; Jiang, B. Y.; Liang, F. X.; Yan, L. T.; Yang, Z. Z. Macromolecules 2020, 53, 1063.  doi: 10.1021/acs.macromol.9b02388

    5. [5]

      Zhang, H.; Wang, Q.; Jiang, B. Y.; Liang, F. X.; Yang, Z. Z. ACS Appl. Mater. Interfaces 2016, 8, 33250.  doi: 10.1021/acsami.6b12472

    6. [6]

      Zhao, R. T.; Yu, X. T.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. ACS Appl. Nano. Mater. 2019, 2, 2127.  doi: 10.1021/acsanm.9b00090

    7. [7]

      Zhao, R. T.; Han, T. H.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. Langmuir 2019, 35, 11435.  doi: 10.1021/acs.langmuir.9b01400

    8. [8]

      Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y. Adv. Mater. 2006, 18, 1152.  doi: 10.1002/adma.200502431

    9. [9]

      Hays, D. A. J. Electrost. 2001, 51-52, 57.
       

    10. [10]

      Wu, B.; Liu, Z. Q.; Liu, X. S.; Liu, G. Q.; Tang, P.; Yuan, W.; Fu, G. L. Nanotechnology 2020, 31, 225301.  doi: 10.1088/1361-6528/ab7649

    11. [11]

      Dolbashian1, C.; Chavez1, B. L.; Bauer, M.; Budi, M.; Andrew, J. S.; Crawford, T. M. J. Phys. D:Appl. Phys. 2020, 53, 195002.  doi: 10.1088/1361-6463/ab71ab

    12. [12]

      Li, L. L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F. M.; Yagmurcukardes, M. Phys. Rev. B 2020, 101, 134102.  doi: 10.1103/PhysRevB.101.134102

    13. [13]

      Paulus, M.; Degen, P.; Brenner, T.; Tiemeyer, S.; Struth, B.; Tolan, M.; Rehage, H. Langmuir 2010, 26, 15945.  doi: 10.1021/la102882j

    14. [14]

      Xu, Q. A.; Kang, X. W.; Bogomolni, R. A.; Chen, S. W. Langmuir 2010, 26, 14923.  doi: 10.1021/la102540n

    15. [15]

      Ozin, G. A.; Manners, I.; Fournier-Bidoz, S.; Arsenault, A. Adv. Mater. 2005, 17, 3011.  doi: 10.1002/adma.200501767

    16. [16]

      Wang, J. ACS Nano 2009, 3, 4.  doi: 10.1021/nn800829k

    17. [17]

      Cui, L. Y.; Fan, S. S.; Yu, C. L. Acta Chim. Sinica 2017, 75, 967(in Chinese).
       

    18. [18]

      Zhang, B. B.; Ma, C.; Wang, X. G. Acta Chim. Sinica 2015, 73, 441(in Chinese).
       

    19. [19]

      Chen, C. Y.; Yi, J. Q.; Dong, H. Y. Chin. J. Chem. 2015, 33, 527.  doi: 10.1002/cjoc.201500168

    20. [20]

      Liang, F. X.; Yang, Z. Z. Acta Polym. Sin. 2017, (6), 883(in Chinese).
       

    21. [21]

      Tang, L.; Liang, F. X.; Wang, Q. Chin. J. Polym. Sci. 2017, 35, 799(in Chinese).
       

    22. [22]

      Meng, H. Y.; Wan, J. P.; Jing, J. Y. Chin. Chem. Lett. 2020, 31, 253(in Chinese).
       

    23. [23]

      Jing, J. Y.; Yao, X. H.; Yang, Z. Z. Acta Polym. Sin. 2018, 8, 1066(in Chinese).
       

    24. [24]

      Liang, F. X.; Liu, B.; Yang, Z. Z. Polym. Bull. 2016, (9), 45(in Chinese).
       

    25. [25]

      Pickering, S. U. J. Am. Chem. Soc. 1907, 91, 2001.  doi: 10.1039/CT9079102001

    26. [26]

      Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7, 21.  doi: 10.1016/S1359-0294(02)00008-0

    27. [27]

      Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226.  doi: 10.1126/science.1078616

    28. [28]

      Melle, S.; Lask, M.; Fuller, G. G. Langmuir 2005, 21, 2158.  doi: 10.1021/la047691n

    29. [29]

      Komazaki, Y.; Hirama, H.; Torii, T. J. Appl. Phys. 2015, 117, 154506.  doi: 10.1063/1.4917379

    30. [30]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 2539.  doi: 10.1021/la991081j

    31. [31]

      Liang, F. X.; Zhang, C. L.; Yang, Z. Z. Adv. Mater. 2014, 26, 6944.  doi: 10.1002/adma.201305415

    32. [32]

      Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Angew. Chem., Int. Ed. 2005, 44, 744.  doi: 10.1002/anie.200461890

    33. [33]

      Laocharoensuk, R.; Burdick, J.; Wang, J. ACS Nano 2008, 2, 1069.  doi: 10.1021/nn800154g

    34. [34]

      Wang, J.; Manesh, K. M. Small 2010, 6, 338.  doi: 10.1002/smll.200901746

    35. [35]

      Gao, W.; Uygun, A.; Wang, J. J. Am. Chem. Soc. 2012, 134, 897.  doi: 10.1021/ja210874s

    36. [36]

      Jonathan, R. H.; Richard, A. L. J.; Anthony, J. R.; Tim, G.; Reza, V.; Ramin, G. Phys. Rev. Lett. 2007, 99, 048102-1.  doi: 10.1103/PhysRevLett.99.048102

    37. [37]

      Ge, Y. E.; Wang, T.; Zheng, M. F.; Jiang, Z. Z.; Wang, S. Nanotechnology 2019, 30, 315702.  doi: 10.1088/1361-6528/ab19c7

    38. [38]

      Zheng, J.; Wang, J. G.; Xiong, Z.; Wan, Z. H.; Zhan, X. J.; Yang, S. J.; Chen, J. W.; Dai, J.; Tang, J. Y. Adv. Funct. Mater. 2019, 29, 1901768.
       

    39. [39]

      Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. J. Am. Chem. Soc. 2016, 138, 6492.  doi: 10.1021/jacs.6b00902

    40. [40]

      Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. ACS Nano 2012, 6, 10910.  doi: 10.1021/nn304335x

    41. [41]

      Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Science 2010, 327, 68.  doi: 10.1126/science.1180769

    42. [42]

      Kirillova, A.; Schliebe, C.; Stoychev, G.; Jakob, A.; Lang, H.; Synytska, A. ACS Appl. Mater. Interfaces 2015, 7, 21218.  doi: 10.1021/acsami.5b05224

    43. [43]

      Wang, C.; Yin, H.; Dai, S.; Sun, S. Chem. Mater. 2010, 22, 3277.  doi: 10.1021/cm100603r

    44. [44]

      Valadares, L. F.; Tao, Y. G.; Zacharia, N. S.; Kitaev, V.; Galembeck, F.; Kapral, R.; Ozin, G. A. Small 2010, 6, 565.  doi: 10.1002/smll.200901976

    45. [45]

      Liu, Y. J.; Hu, J. K.; Yu, X. T.; Xu, X. Y.; Gao, Y.; Li, H. M.; Liang, F. X. J. Colloid Interface Sci. 2017, 490, 357.  doi: 10.1016/j.jcis.2016.11.053

    46. [46]

      Xu, X. Q.; Deng, C. H.; Gao, M. X.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. Adv. Mater. 2006, 18, 3289.  doi: 10.1002/adma.200601546

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(20)
  • Abstract views(2478)
  • HTML views(397)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return