Citation: Zhao Ruotong, Han Tianhao, Sun Dayin, Shan Dan, Liu Zhengping, Liang Fuxin. Multifunctional Fe3O4@SiO2Janus Particles[J]. Acta Chimica Sinica, ;2020, 78(9): 945-954. doi: 10.6023/A20060208 shu

Multifunctional Fe3O4@SiO2Janus Particles

  • Corresponding author: Liu Zhengping, lzp@bnu.edu.cn Liang Fuxin, liangfuxin@tsinghua.edu.cn
  • Received Date: 4 June 2020
    Available Online: 13 July 2020

    Fund Project: the National Natural Science Foundation of China 51622308the National Natural Science Foundation of China 51673119Project supported by the National Natural Science Foundation of China (Nos. 51673119, 51622308)

Figures(11)

  • Fe3O4@SiO2 particles were synthesized by a solvothermal method and a classical stber method. Superparamagnetic Fe3O4 was the core, and a sol-gel coating of SiO2 was the shell. After the SiO2 surface was modified with amino groups, benzaldehyde was conjugated to the particles by a Schiff base reaction. The Fe3O4@SiO2 particles were emulsified in paraffin/water as a solid emulsifier to obtain an oil-in-water Pickering emulsion. After cooling the paraffin, the particles were fixed on the surface of the emulsion droplets. The particles were etched in ammonium fluoride aqueous solution, and Janus particles with different structures could be obtained by adjusting the etching time. Via the in situ growth of metal Pt or Ag nanoparticles, superparamagnetic Fe3O4@SiO2-Pt or Fe3O4@SiO2-Ag Janus particles were obtained. The movement of Fe3O4@SiO2-Pt Janus particles was observed due to the catalytic decomposition of hydrogen peroxide aqueous solution. It was found that in the short term, there was a linear motion, while in the long term, the motion direction and trajectory were random. Fe3O4@SiO2-Ag Janus particles were used as magnetic solid surfactants to stabilize the emulsions and catalyze the nitro reduction. About 60% of the surficial area of the Janus particles was modified by phenyl groups, while the remaining 40% was covered with Ag nanoparticles. Under the premise of maintaining the Janus balance, the whole particle became more hydrophobic, which was conducive to the formation of the water-in-oil emulsion. In addition, the Ag side of the Janus particles was towards the aqueous phase, and the opposite hydrophobic side was towards the oil phase. The Janus particles possessed a fixed orientation assembly at the oil-water interface. The assemble membrane possessed Janus characteristics, and it facilitated the stable dispersion of the emulsion and the catalysis. The method has the advantages of a simple principle, capability for mass production, universality and versatility. It is expected that Janus particles will be used to more precisely regulate the zoning with different functional substances.
  • 

    1   引言

    清洁可靠的能源供应方式已成为21世纪最重要的关注点之一, 这是由于它与人们的日常生活、全球的环境与经济以及人类的健康息息相关[19]. 尽管基于燃烧的能源技术在满足我们的能源需求方面一直占据主导地位, 但是其仍然存在增加温室气体排放量以及环境污染等问题. 即将面临的化石燃料的短缺以及日益增长的环境问题促使科研工作者积极探索和利用可持续、清洁和高效的技术来进行能量的供应和存储[1016].

    锂离子电池作为重要的电力能源存储设备, 已经引起了全世界的研究兴趣[1727]. 目前, 锂离子电池通常采用廉价的石墨为负极材料[2832]. 但是其存在理论比容量小(372 mAh•g-1)、首次放电效率低且稳定性较差等问题[3337], 限制了其在商业领域的实际应用, 因此有必要开发高性能电极材料. 石墨烯是一种新型的二维材料, 具有优异的导电性及特殊的纳米片层结构[3841]. 石墨烯是通过氧化石墨(GO)高温加热制得, 氧化石墨烯表面具有大量的含氧基团、羟基、环氧官能团, 这些含氧官能团的存在使得氧化石墨烯表面带有负电荷, 有利于石墨烯与氧化物之间的复合. 具有不同尺寸及形貌的过渡金属氧化物与石墨烯的复合材料已被广泛应用于锂离子电池负极材料[4245]. 由于协同作用与界面相互作用的结果, 石墨烯与氧化物的复合材料可以改善电池的充放电比容量、倍率特性以及循环稳定性.

    本研究工作中我们制备了CoO和石墨烯(RGO)的复合材料, 并研究了其储锂性能. 首先采用Hummers法制备了GO, 将其在水中分散均匀再与Co(NO3)2溶液混合. 先采用水热法制备了前驱体, 再将得到的前驱体在氮气气氛下进行热处理, 最终得到CoO/RGO复合材料. 作为锂电负极, 展现了较高的比容量、优异的倍率性能及循环稳定性, 这源自于CoO和RGO之间的协同效应及界面作用. 该材料在锂离子电池负极材料中具有潜在的应用价值.

    2   结果与讨论

    2.1   CoO/RGO复合材料的结构表征

    X射线衍射 (XRD)是表征材料晶相组成的有效手段. CoO/RGO1, CoO/RGO2, CoO/RGO3三个复合材料的XRD如图 1所示. 其中, 衍射角2θ在42.3°和44.5°的两个峰为CoO晶相的特征衍射峰, 衍射角2θ在25°左右的宽峰为石墨烯(RGO)的特征衍射峰, 这表明我们成功合成了CoO/RGO复合材料. 为了研究石墨烯的存在对复合材料储锂性能的影响, 我们在制备过程中没有加入氧化石墨(GO), 得到的是Co3O4晶相, 并且具有较好的结晶度(如图 1所示). 这是由于GO的还原作用, 导致在合成过程中加入GO时钴的晶相由Co3O4向CoO转变.

    图 1  Co3O4, CoO/RGO1, CoO/RGO2和CoO/RGO3样品的XRD图 Figure 1.  XRD patterns of Co3O4, CoO/RGO1, CoO/RGO2 and CoO/RGO3 samples

    扫描电子显微镜(SEM)用于表征样品的微观形貌及结构. 图 2为Co3O4, CoO/RGO1, CoO/RGO2, CoO/RGO3样品的SEM图. 如图 2(A)所示, 纯的Co3O4呈现了表面具有丰富孔的薄片结构. 然而对于CoO/RGO复合材料来说, 如图 3(BD)所示, 石墨烯呈现了聚集的块状结构, 并且随着GO量的增加这种团聚现象更加明显, 这主要是由于高温热处理导致石墨烯片层团聚. 另外, 可以看出CoO纳米粒子与RGO紧密接触, 这有利于电子的快速传输, 使其储锂性能提高. 透射电子显微镜(TEM)可以用于进一步分析样品的微观结构. 由图 3的TEM照片可以看出, CoO纳米粒子分散在石墨烯片层表面, 与石墨烯片层紧密接触, 这有利于离子电子的传输, 使其储锂性能提高.

    图 2  样品的扫描电子显微镜照片: (A) Co3O4, (B) CoO/RGO1, (C) CoO/RGO2, (D) CoO/RGO3 Figure 2.  SEM images of (A) Co3O4, (B) CoO/RGO1, (C) CoO/RGO2 and (D) CoO/RGO3
    图 3  CoO/RGO2样品的透射电子显微镜照片 Figure 3.  TEM image of CoO/RGO2 sample

    2.2   CoO/RGO复合材料的电化学性能研究

    由于石墨烯与金属氧化物之间的协同效应, 金属氧化物与石墨烯的复合材料已经被广泛应用于锂离子电池负极材料中. 为了对材料的储锂性能进行测试, 分别将本实验制得的复合材料CoO/RGO1, CoO/RGO2, CoO/RGO3以及Co3O4作为负极, 锂片作为正极, 将其组装成纽扣电池, 对其进行了恒电流充放电测试. 图 4A表明在电流密度为100 mA•g-1的条件下, CoO/RGO2电极的首次放电和充电比容量分别能达到1312.6和1084.8 mAh•g-1, 库伦效率为82.6%; 而二次循环后其放电和充电比容量仍然能够保持在1156.4和1063.7 mAh•g-1, 库伦效率为92.0%. CoO/RGO1, CoO/RGO2, CoO/RGO3以及Co3O4在不同电流密度下的比容量变化如图 4B所示. 由图中可以明显地看出, 与Co3O4相比, CoO/RGO复合材料的放电比容量有了明显的提高, 这是由于RGO的存在增加了电极材料的导电性及活性位点, 这使得电池在充放电过程中锂离子能够更加容易的嵌入和脱出, 进而放电比容量提高, 导电能力增加[46, 47]; 其中, CoO/RGO2电极的比容量要高于CoO/RGO1和CoO/RGO3, 这说明复合材料中适宜的CoO与RGO质量比对其性能有重要的影响.

    图 4  样品的电化学性能图: (A)电流密度为100 mA•g-1时, CoO/RGO2电极的充放电曲线; (B) CoO/RGO1, CoO/RGO2, CoO/RGO3以及Co3O4电极在电流密度为100~1000 mA•g-1的比容量变化; (C)在电流密度为1000 mA•g-1时CoO/RGO2电极循环600圈时的电压-比容量图 Figure 4.  Electrochemical performances of the synthetic samples: (A) Charge-discharge profiles for CoO/RGO2 electrode at a current density of 100 mA• g-1; (B) Rate capability for CoO/RGO1, CoO/RGO2, CoO/RGO3 and Co3O4 electrodes at different current density ranging from 100 to 1000 mA•g-1. (C) Cyclic performance for CoO/RGO2 electrode at current densities of 1000 mA•g-1 for 600 cycles

    图 4C是电流密度为1000 mA•g-1时CoO/RGO2电极循环600圈时的比容量变化图, 可以明显看出在前450圈循环过程中, CoO/RGO2的比容量是逐渐增加的, 这种比容量的增加对于金属氧化物来说是比较常见 的[4851]. 450圈之后, 比容量基本没有变化, 库伦效率保持在99%以上, 说明CoO/RGO2优异的循环稳定性, 这主要归因于CoO与RGO之间的协同效应. 另外, 合成的复合材料比文献报道的CoO性能高很多[52, 53], 进一步说明了CoO与RGO之间的协同作用对于材料的储锂性能提高是非常重要的.

    电池的倍率性能是评价其性能的重要标准之一, 图 5为CoO/RGO2电极在大电流放电速率时比容量随循环次数的变化图. 由图 5A不同电流密度下的比容量变化可以看出, 随着电流密度由2000 mA•g-1向50000 mA• g-1逐渐增加, CoO/RGO2电极展现了优异的倍率特性. 在电流密度为2000 mA•g-1时, 其放电和充电比容量分别为615.8和619.9 mAh•g-1, 库伦效率为99.3%. 即使是在50000 mA•g-1的高电流密度下, 其放电和充电比容量分别可以达到216.9和216.2 mAh•g-1, 库伦效率为99.9%以上. 当电流密度再降至2000 mA•g-1时, 其放电和充电比容量分别为618.8和616.3 mAh•g-1, 库伦效率为99.6%. 说明CoO/RGO2电极的可逆容量较高. 在10000 mA•g-1的大电流密度下测试其循环性能, 如图 5B所示, 随着循环次数的增加其放电和充电比容量是逐渐增加的, 当循环达到270圈以后, 比容量趋于稳定, 最终稳定在557.4 mAh•g-1. 此外, 可以看出在循环测试的过程中, 库伦效率一直保持在98%~99.9%, 说明CoO/RGO2电极具有较好的循环稳定性及高的可逆性.

    图 5  CoO/RGO2的电化学性能图: (A)大电流密度下(2000~50000 mA•g-1)的比容量与循环圈数的关系; (B) 电流密度10000 mA•g-1下的循环稳定性及库伦效率(≈99%) Figure 5.  (A) Rate capability at different current density ranging from 2000 to 50000 mA•g-1; (B) Cycling performance at current densities of 10000 mA•g-1with Coulombic efficiency of 99%

    电池的电化学阻抗谱图(EIS)及循环伏安测试如图 6所示. 图 6A可以看出所有的EIS谱图均包括一个高频区域的半圆形和低频区域的斜线. 高频区域的半圆形主要包括界面电荷传递阻抗(Rct)和SEI 膜阻抗(RSEI), 而低频区域的斜线主要归因于锂离子的扩散阻抗. 半圆形的半径越小、斜率越大, 说明锂离子能够更快地扩散传输通过SEI 膜、加快电荷转移的反应速率. 从图中可以明显地看出, 与复合材料相比, Co3O4具有更低的界面电荷传递阻抗和SEI 阻抗, 这一现象是由于氧化石墨很难被完全还原, 还原后的石墨烯表面仍然具有很多含氧基团, 导致复合物的导电性并没有纯的Co3O4好. 但是由于纯的Co3O4其没有与石墨烯复合, 因此在电化学测试中稳定性较差. 在氧化物与石墨烯的复合材料中, CoO/RGO2样品的阻值介于CoO/RGO1和CoO/RGO3之间, 又由于其适当的CoO含量, 因此CoO/RGO2复合材料具有优异的倍率性能和循环稳定性. 图 6B的循环伏安可以看出在扫速为0.1 mV•s-1的条件下, CoO/RGO2复合材料充放电循环1~5圈时, 其循环伏安曲线几乎重合, 这进一步证明了其具有极好的循环稳定性. 石墨烯基复合材料是一种层层自组装的纳米结构, 这种结构更加有利于电子和离子的运输, 能够促进反应的快速进行. 更重要的是, CoO与石墨烯的紧密接触能够扩大活性物质的接触面积以及活性位点, 因此使复合材料的储锂性能有了很大的提高. Co3O4具有最低的界面电荷传递阻抗, 但倍率性能却最差, 而加入石墨烯的三组样品随着石墨烯含量的增加, 界面电阻反而增大.

    图 6  (A) Co3O4, CoO/RGO1, CoO/RGO2, CoO/RGO3电极的交流阻抗谱图(EIS); (B) CoO/RGO1样品的循环伏安图, 电压范围在0.01~3.0 V, 扫速为1 mV•s-1 Figure 6.  (A) Nyquist plots of Co3O4, CoO/RGO1, CoO/RGO2 and CoO/RGO3 electrodes; (B) CVs of CoO/RGO1 electrode scanned between 0.01~3.0 V (vs. Li+/Li) at a scan rate of 1 mV•s-1

    3   结论

    总之, 我们采用简单的一步法成功制备了CoO/RGO复合材料作为锂离子电池的负极材料. CoO纳米粒子与石墨烯片层之间的有效复合, 使该材料具有比容量高、倍率性能好及循环稳定性好的特点. 在CoO/RGO复合材料中, 石墨烯片层能够形成空间的导电网络从而提高复合材料的电子传导特性. 又由于其具有优异的机械性能, 因此石墨烯的存在能够起到稳定材料的结构、提高材料循环稳定性的作用. 另外, 石墨烯片层与片层之间的间隙有利于电解液的充分浸润, 能够使活性物质与电解液充分接触, 从而可以有效缩短Li+的传输距离. 本研究工作提供了一种简单、有效的方法制备高性能锂离子电池负极材料, 为降低锂离子电池的成本提供了新思路.

    4   实验部分

    4.1   CoO/RGO复合材料的制备

    称取一定量的石墨微粉, 采用改进的Hummers法制备氧化石墨(GO), 酸洗三次、水洗至中性, 烘干备用. 准确称取10 mg GO加入到50 mL去离子水中, 超声分散均匀后, 倒入30 mL浓度为0.1 mol/L的Co(NO3)2溶液中, 搅拌30 min. 将上述混合溶液倒入100 mL反应釜中, 在160 ℃温度下反应6 h. 反应完成后冷却至室温后抽滤, 将得到的固体粉末用去离子水洗三次、无水乙醇洗一次, 随后将其置于80 ℃烘箱中进行干燥处理. 然后在氮气气氛下以5 ℃•min-1的升温速率加热到500 ℃, 并恒温2 h制备了CoO/RGO1复合物. 为了研究GO的用量对样品结构和性能的影响, 我们将GO的用量调节为20 mg和30 mg, 其它合成条件不变, 分别制备了CoO/RGO2和CoO/RGO3两个样品.

    4.2   材料表征

    采用X射线粉末衍射仪(XRD)对样品的晶相组成进行分析, 仪器型号为德国布鲁克公司生产的Bruker D8型X-射线衍射仪, 检测器为LynxEye型号, 测试条件为Cu Kα (λ=1.5406 Å). 采用扫描电子显微镜(SEM)观察样品的微观形貌和结构, 测试的加速电压为5 kV, 仪器型号为HitachiS-4800. 采用透射电子显微镜(TEM)观察样品的微观结构, 测试的加速电压为200 kV, 仪器型号为日本电子公司生产的JEM-2100.

    4.3   电池组装及测试

    将实验所需的正负极外壳、垫片、弹簧片加入到乙醇中, 在超声频率为10 kHz、超声功率为400 W条件下, 进行充分的洗涤, 超声时间为3~4 h, 待样品洗净后将乙醇倒出, 再用乙醇洗涤两次, 随后将其置于80 ℃烘箱中进行干燥处理, 待冷却至室温后送入真空手套箱中. CoO/RGO复合材料与乙炔黑、聚偏二氟乙烯(PVDF)按照8∶1∶1的质量比混合均匀, 再加入数滴有机溶剂NMP (N-甲基-吡咯烷酮), 充分搅拌成均匀糊状物后, 将其均匀涂覆于铜箔上, 在80 ℃下真空干燥12 h. 将涂有RGO/CoO复合材料的铜箔为负极, 金属锂片为正极, 六氟磷锂溶液[乙烯碳酸酯(EC)∶碳酸甲乙酯(EMC)∶碳酸二甲酯(DMC)=1∶1∶1(体积比)]为电解液. 在充满高纯氩气的手套箱内, 将其组装成扣式电池, 随后使用封口机将电池密封好. 待电池静置12 h后, 用CT2001A蓝电电池测试仪对扣式电池进行恒流充放电性能测试, 电压范围为0.01~3.00 V. 用Autolab PGSTAT302N电化学工作站进行循环伏安和交流阻抗测试.

    1. [1]

      De Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645.  doi: 10.1103/RevModPhys.64.645

    2. [2]

      Jiang, S.; Granick, S. Janus Particles Synthesis, Self-assembly and Applications, RSC, London, England, 2012.
       

    3. [3]

      Shi, S. Y.; Zhang, L. L.; Zhang, G. L.; Song, X. M.; Sun, D. Y.; Liang, F. X.; Yang, Z. Z. Macromolecules 2020, 53, 2228.  doi: 10.1021/acs.macromol.0c00166

    4. [4]

      Xiang, D.; Jiang, B. Y.; Liang, F. X.; Yan, L. T.; Yang, Z. Z. Macromolecules 2020, 53, 1063.  doi: 10.1021/acs.macromol.9b02388

    5. [5]

      Zhang, H.; Wang, Q.; Jiang, B. Y.; Liang, F. X.; Yang, Z. Z. ACS Appl. Mater. Interfaces 2016, 8, 33250.  doi: 10.1021/acsami.6b12472

    6. [6]

      Zhao, R. T.; Yu, X. T.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. ACS Appl. Nano. Mater. 2019, 2, 2127.  doi: 10.1021/acsanm.9b00090

    7. [7]

      Zhao, R. T.; Han, T. H.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. Langmuir 2019, 35, 11435.  doi: 10.1021/acs.langmuir.9b01400

    8. [8]

      Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y. Adv. Mater. 2006, 18, 1152.  doi: 10.1002/adma.200502431

    9. [9]

      Hays, D. A. J. Electrost. 2001, 51-52, 57.
       

    10. [10]

      Wu, B.; Liu, Z. Q.; Liu, X. S.; Liu, G. Q.; Tang, P.; Yuan, W.; Fu, G. L. Nanotechnology 2020, 31, 225301.  doi: 10.1088/1361-6528/ab7649

    11. [11]

      Dolbashian1, C.; Chavez1, B. L.; Bauer, M.; Budi, M.; Andrew, J. S.; Crawford, T. M. J. Phys. D:Appl. Phys. 2020, 53, 195002.  doi: 10.1088/1361-6463/ab71ab

    12. [12]

      Li, L. L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F. M.; Yagmurcukardes, M. Phys. Rev. B 2020, 101, 134102.  doi: 10.1103/PhysRevB.101.134102

    13. [13]

      Paulus, M.; Degen, P.; Brenner, T.; Tiemeyer, S.; Struth, B.; Tolan, M.; Rehage, H. Langmuir 2010, 26, 15945.  doi: 10.1021/la102882j

    14. [14]

      Xu, Q. A.; Kang, X. W.; Bogomolni, R. A.; Chen, S. W. Langmuir 2010, 26, 14923.  doi: 10.1021/la102540n

    15. [15]

      Ozin, G. A.; Manners, I.; Fournier-Bidoz, S.; Arsenault, A. Adv. Mater. 2005, 17, 3011.  doi: 10.1002/adma.200501767

    16. [16]

      Wang, J. ACS Nano 2009, 3, 4.  doi: 10.1021/nn800829k

    17. [17]

      Cui, L. Y.; Fan, S. S.; Yu, C. L. Acta Chim. Sinica 2017, 75, 967(in Chinese).
       

    18. [18]

      Zhang, B. B.; Ma, C.; Wang, X. G. Acta Chim. Sinica 2015, 73, 441(in Chinese).
       

    19. [19]

      Chen, C. Y.; Yi, J. Q.; Dong, H. Y. Chin. J. Chem. 2015, 33, 527.  doi: 10.1002/cjoc.201500168

    20. [20]

      Liang, F. X.; Yang, Z. Z. Acta Polym. Sin. 2017, (6), 883(in Chinese).
       

    21. [21]

      Tang, L.; Liang, F. X.; Wang, Q. Chin. J. Polym. Sci. 2017, 35, 799(in Chinese).
       

    22. [22]

      Meng, H. Y.; Wan, J. P.; Jing, J. Y. Chin. Chem. Lett. 2020, 31, 253(in Chinese).
       

    23. [23]

      Jing, J. Y.; Yao, X. H.; Yang, Z. Z. Acta Polym. Sin. 2018, 8, 1066(in Chinese).
       

    24. [24]

      Liang, F. X.; Liu, B.; Yang, Z. Z. Polym. Bull. 2016, (9), 45(in Chinese).
       

    25. [25]

      Pickering, S. U. J. Am. Chem. Soc. 1907, 91, 2001.  doi: 10.1039/CT9079102001

    26. [26]

      Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7, 21.  doi: 10.1016/S1359-0294(02)00008-0

    27. [27]

      Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226.  doi: 10.1126/science.1078616

    28. [28]

      Melle, S.; Lask, M.; Fuller, G. G. Langmuir 2005, 21, 2158.  doi: 10.1021/la047691n

    29. [29]

      Komazaki, Y.; Hirama, H.; Torii, T. J. Appl. Phys. 2015, 117, 154506.  doi: 10.1063/1.4917379

    30. [30]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 2539.  doi: 10.1021/la991081j

    31. [31]

      Liang, F. X.; Zhang, C. L.; Yang, Z. Z. Adv. Mater. 2014, 26, 6944.  doi: 10.1002/adma.201305415

    32. [32]

      Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Angew. Chem., Int. Ed. 2005, 44, 744.  doi: 10.1002/anie.200461890

    33. [33]

      Laocharoensuk, R.; Burdick, J.; Wang, J. ACS Nano 2008, 2, 1069.  doi: 10.1021/nn800154g

    34. [34]

      Wang, J.; Manesh, K. M. Small 2010, 6, 338.  doi: 10.1002/smll.200901746

    35. [35]

      Gao, W.; Uygun, A.; Wang, J. J. Am. Chem. Soc. 2012, 134, 897.  doi: 10.1021/ja210874s

    36. [36]

      Jonathan, R. H.; Richard, A. L. J.; Anthony, J. R.; Tim, G.; Reza, V.; Ramin, G. Phys. Rev. Lett. 2007, 99, 048102-1.  doi: 10.1103/PhysRevLett.99.048102

    37. [37]

      Ge, Y. E.; Wang, T.; Zheng, M. F.; Jiang, Z. Z.; Wang, S. Nanotechnology 2019, 30, 315702.  doi: 10.1088/1361-6528/ab19c7

    38. [38]

      Zheng, J.; Wang, J. G.; Xiong, Z.; Wan, Z. H.; Zhan, X. J.; Yang, S. J.; Chen, J. W.; Dai, J.; Tang, J. Y. Adv. Funct. Mater. 2019, 29, 1901768.
       

    39. [39]

      Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. J. Am. Chem. Soc. 2016, 138, 6492.  doi: 10.1021/jacs.6b00902

    40. [40]

      Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. ACS Nano 2012, 6, 10910.  doi: 10.1021/nn304335x

    41. [41]

      Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Science 2010, 327, 68.  doi: 10.1126/science.1180769

    42. [42]

      Kirillova, A.; Schliebe, C.; Stoychev, G.; Jakob, A.; Lang, H.; Synytska, A. ACS Appl. Mater. Interfaces 2015, 7, 21218.  doi: 10.1021/acsami.5b05224

    43. [43]

      Wang, C.; Yin, H.; Dai, S.; Sun, S. Chem. Mater. 2010, 22, 3277.  doi: 10.1021/cm100603r

    44. [44]

      Valadares, L. F.; Tao, Y. G.; Zacharia, N. S.; Kitaev, V.; Galembeck, F.; Kapral, R.; Ozin, G. A. Small 2010, 6, 565.  doi: 10.1002/smll.200901976

    45. [45]

      Liu, Y. J.; Hu, J. K.; Yu, X. T.; Xu, X. Y.; Gao, Y.; Li, H. M.; Liang, F. X. J. Colloid Interface Sci. 2017, 490, 357.  doi: 10.1016/j.jcis.2016.11.053

    46. [46]

      Xu, X. Q.; Deng, C. H.; Gao, M. X.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. Adv. Mater. 2006, 18, 3289.  doi: 10.1002/adma.200601546

    1. [1]

      De Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645.  doi: 10.1103/RevModPhys.64.645

    2. [2]

      Jiang, S.; Granick, S. Janus Particles Synthesis, Self-assembly and Applications, RSC, London, England, 2012.
       

    3. [3]

      Shi, S. Y.; Zhang, L. L.; Zhang, G. L.; Song, X. M.; Sun, D. Y.; Liang, F. X.; Yang, Z. Z. Macromolecules 2020, 53, 2228.  doi: 10.1021/acs.macromol.0c00166

    4. [4]

      Xiang, D.; Jiang, B. Y.; Liang, F. X.; Yan, L. T.; Yang, Z. Z. Macromolecules 2020, 53, 1063.  doi: 10.1021/acs.macromol.9b02388

    5. [5]

      Zhang, H.; Wang, Q.; Jiang, B. Y.; Liang, F. X.; Yang, Z. Z. ACS Appl. Mater. Interfaces 2016, 8, 33250.  doi: 10.1021/acsami.6b12472

    6. [6]

      Zhao, R. T.; Yu, X. T.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. ACS Appl. Nano. Mater. 2019, 2, 2127.  doi: 10.1021/acsanm.9b00090

    7. [7]

      Zhao, R. T.; Han, T. H.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. Langmuir 2019, 35, 11435.  doi: 10.1021/acs.langmuir.9b01400

    8. [8]

      Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y. Adv. Mater. 2006, 18, 1152.  doi: 10.1002/adma.200502431

    9. [9]

      Hays, D. A. J. Electrost. 2001, 51-52, 57.
       

    10. [10]

      Wu, B.; Liu, Z. Q.; Liu, X. S.; Liu, G. Q.; Tang, P.; Yuan, W.; Fu, G. L. Nanotechnology 2020, 31, 225301.  doi: 10.1088/1361-6528/ab7649

    11. [11]

      Dolbashian1, C.; Chavez1, B. L.; Bauer, M.; Budi, M.; Andrew, J. S.; Crawford, T. M. J. Phys. D:Appl. Phys. 2020, 53, 195002.  doi: 10.1088/1361-6463/ab71ab

    12. [12]

      Li, L. L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F. M.; Yagmurcukardes, M. Phys. Rev. B 2020, 101, 134102.  doi: 10.1103/PhysRevB.101.134102

    13. [13]

      Paulus, M.; Degen, P.; Brenner, T.; Tiemeyer, S.; Struth, B.; Tolan, M.; Rehage, H. Langmuir 2010, 26, 15945.  doi: 10.1021/la102882j

    14. [14]

      Xu, Q. A.; Kang, X. W.; Bogomolni, R. A.; Chen, S. W. Langmuir 2010, 26, 14923.  doi: 10.1021/la102540n

    15. [15]

      Ozin, G. A.; Manners, I.; Fournier-Bidoz, S.; Arsenault, A. Adv. Mater. 2005, 17, 3011.  doi: 10.1002/adma.200501767

    16. [16]

      Wang, J. ACS Nano 2009, 3, 4.  doi: 10.1021/nn800829k

    17. [17]

      Cui, L. Y.; Fan, S. S.; Yu, C. L. Acta Chim. Sinica 2017, 75, 967(in Chinese).
       

    18. [18]

      Zhang, B. B.; Ma, C.; Wang, X. G. Acta Chim. Sinica 2015, 73, 441(in Chinese).
       

    19. [19]

      Chen, C. Y.; Yi, J. Q.; Dong, H. Y. Chin. J. Chem. 2015, 33, 527.  doi: 10.1002/cjoc.201500168

    20. [20]

      Liang, F. X.; Yang, Z. Z. Acta Polym. Sin. 2017, (6), 883(in Chinese).
       

    21. [21]

      Tang, L.; Liang, F. X.; Wang, Q. Chin. J. Polym. Sci. 2017, 35, 799(in Chinese).
       

    22. [22]

      Meng, H. Y.; Wan, J. P.; Jing, J. Y. Chin. Chem. Lett. 2020, 31, 253(in Chinese).
       

    23. [23]

      Jing, J. Y.; Yao, X. H.; Yang, Z. Z. Acta Polym. Sin. 2018, 8, 1066(in Chinese).
       

    24. [24]

      Liang, F. X.; Liu, B.; Yang, Z. Z. Polym. Bull. 2016, (9), 45(in Chinese).
       

    25. [25]

      Pickering, S. U. J. Am. Chem. Soc. 1907, 91, 2001.  doi: 10.1039/CT9079102001

    26. [26]

      Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7, 21.  doi: 10.1016/S1359-0294(02)00008-0

    27. [27]

      Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226.  doi: 10.1126/science.1078616

    28. [28]

      Melle, S.; Lask, M.; Fuller, G. G. Langmuir 2005, 21, 2158.  doi: 10.1021/la047691n

    29. [29]

      Komazaki, Y.; Hirama, H.; Torii, T. J. Appl. Phys. 2015, 117, 154506.  doi: 10.1063/1.4917379

    30. [30]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 2539.  doi: 10.1021/la991081j

    31. [31]

      Liang, F. X.; Zhang, C. L.; Yang, Z. Z. Adv. Mater. 2014, 26, 6944.  doi: 10.1002/adma.201305415

    32. [32]

      Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Angew. Chem., Int. Ed. 2005, 44, 744.  doi: 10.1002/anie.200461890

    33. [33]

      Laocharoensuk, R.; Burdick, J.; Wang, J. ACS Nano 2008, 2, 1069.  doi: 10.1021/nn800154g

    34. [34]

      Wang, J.; Manesh, K. M. Small 2010, 6, 338.  doi: 10.1002/smll.200901746

    35. [35]

      Gao, W.; Uygun, A.; Wang, J. J. Am. Chem. Soc. 2012, 134, 897.  doi: 10.1021/ja210874s

    36. [36]

      Jonathan, R. H.; Richard, A. L. J.; Anthony, J. R.; Tim, G.; Reza, V.; Ramin, G. Phys. Rev. Lett. 2007, 99, 048102-1.  doi: 10.1103/PhysRevLett.99.048102

    37. [37]

      Ge, Y. E.; Wang, T.; Zheng, M. F.; Jiang, Z. Z.; Wang, S. Nanotechnology 2019, 30, 315702.  doi: 10.1088/1361-6528/ab19c7

    38. [38]

      Zheng, J.; Wang, J. G.; Xiong, Z.; Wan, Z. H.; Zhan, X. J.; Yang, S. J.; Chen, J. W.; Dai, J.; Tang, J. Y. Adv. Funct. Mater. 2019, 29, 1901768.
       

    39. [39]

      Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. J. Am. Chem. Soc. 2016, 138, 6492.  doi: 10.1021/jacs.6b00902

    40. [40]

      Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. ACS Nano 2012, 6, 10910.  doi: 10.1021/nn304335x

    41. [41]

      Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Science 2010, 327, 68.  doi: 10.1126/science.1180769

    42. [42]

      Kirillova, A.; Schliebe, C.; Stoychev, G.; Jakob, A.; Lang, H.; Synytska, A. ACS Appl. Mater. Interfaces 2015, 7, 21218.  doi: 10.1021/acsami.5b05224

    43. [43]

      Wang, C.; Yin, H.; Dai, S.; Sun, S. Chem. Mater. 2010, 22, 3277.  doi: 10.1021/cm100603r

    44. [44]

      Valadares, L. F.; Tao, Y. G.; Zacharia, N. S.; Kitaev, V.; Galembeck, F.; Kapral, R.; Ozin, G. A. Small 2010, 6, 565.  doi: 10.1002/smll.200901976

    45. [45]

      Liu, Y. J.; Hu, J. K.; Yu, X. T.; Xu, X. Y.; Gao, Y.; Li, H. M.; Liang, F. X. J. Colloid Interface Sci. 2017, 490, 357.  doi: 10.1016/j.jcis.2016.11.053

    46. [46]

      Xu, X. Q.; Deng, C. H.; Gao, M. X.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. Adv. Mater. 2006, 18, 3289.  doi: 10.1002/adma.200601546

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(20)
  • Abstract views(2800)
  • HTML views(471)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return