Citation: Bian Yangshuang, Liu Kai, Guo Yunlong, Liu Yunqi. Research Progress in Functional Stretchable Organic Electronic Devices[J]. Acta Chimica Sinica, ;2020, 78(9): 848-864. doi: 10.6023/A20050197 shu

Research Progress in Functional Stretchable Organic Electronic Devices

  • Corresponding author: Guo Yunlong, guoyunlong@iccas.ac.cn
  • Received Date: 31 May 2020
    Available Online: 8 July 2020

    Fund Project: the National Natural Science Foundation of China 91833306Project supported by the National Natural Science Foundation of China (Nos. 21922511, 51873216, 61890943, 91833306) and the National Key Research and Development Project (No. 2018YFA0703202).the National Natural Science Foundation of China 61890943the National Key Research and Development Project 2018YFA0703202the National Natural Science Foundation of China 51873216the National Natural Science Foundation of China  21922511

Figures(15)

  • Stretchable organic electronic devices are characterized with high mechanical stability, superior electronic stability, low cost, satisfactory biocompatibility, etc., thus having been regarded as an inevitable trend in the development of future electronics. Furthermore, the functional stretchable organic electronic devices provide pathways toward the emerging high-tech fields such as wearable and implantable devices, intelligent medical diagnosis system, software robots, etc. This review focuses on the research advances in functional stretchable organic electronic devices, including stretchable organic transistors (field-effect transistors, phototransistors, memory transistors and sensors), stretchable organic optoelectronic devices (light-emitting diodes, alternating current electroluminescent devices and light-emitting electrochemical cells), stretchable organic energy storage and conversion devices (solar cells, supercapacitors and nanogenerators), stretchable organic sensors (pressure sensors, strain sensors, tactile sensors, temperature sensors, gas sensors and other sensors), stretchable organic memory (resistive memory, magnetic memory and bionic synaptic memory) and other functional stretchable organic electronic devices. Finally, through the analyses of the existing scientific problems and future development of the functional stretchable organic electronic devices, we put forward some suggestions.
  • 加载中
    1. [1]

      Sekitani, T.; Someya, T. Adv. Mater. 2010, 22, 2228.  doi: 10.1002/adma.200904054

    2. [2]

      Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J.; Li, W. X.; Lei, Y. S.; Kim, N.; Wang, C. F.; Zhang, L.; Ward, J. W.; Maralani, A.; Li, X. S.; Durstock, M. F.; Pisano, A.; Lin, Y.; Xu, S. Nat. Electron. 2018, 1, 473.  doi: 10.1038/s41928-018-0116-y

    3. [3]

      Rogers, J. A.; Someya, T.; Huang, Y. G. Science 2010, 327, 1603.  doi: 10.1126/science.1182383

    4. [4]

      Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z.; Huang, Y. G.; Rogers, J. A. Adv. Mater. 2013, 25, 2773.  doi: 10.1002/adma.201204426

    5. [5]

      Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. Science 2008, 321, 1468.  doi: 10.1126/science.1160309

    6. [6]

      Xu, S.; Zhang, Y. H.; Jia, L.; Mathewson, K. E.; Jang, K. I.; Kim, J.; Fu, H. R.; Huang, X.; Chava, P.; Wang, R. H.; Bhole, S.; Wang, L. Z.; Na, Y. J.; Guan, Y.; Flavin, M.; Han, Z. S.; Huang, Y. G.; Rogers, J. A. Science 2014, 344, 70.  doi: 10.1126/science.1250169

    7. [7]

      Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Adv. Mater. 2019, 31, 1904765.  doi: 10.1002/adma.201904765

    8. [8]

      Oh, J. Y.; Rondeau-Gagne, S.; Chiu, Y. C.; Chortos, A.; Lissel, F.; Wang, G. J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C. X.; Gu, X. D.; Bae, W. G.; Kim, Y.; Jin, L. H.; Chung, J. W.; Tok, J. B. H.; Bao, Z. N. Nature 2016, 539, 411.  doi: 10.1038/nature20102

    9. [9]

      Wu, H. C.; Benight, S. J.; Chortos, A.; Lee, W. Y.; Mei, J. G.; To, J. W. F.; Lu, C. E.; He, M. Q.; Tok, J. B. H.; Chen, W. C.; Bao, Z. N. Chem. Mater. 2014, 26, 4544.  doi: 10.1021/cm502271j

    10. [10]

      Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Nano Res. 2019, 12, 1978.  doi: 10.1007/s12274-019-2296-9

    11. [11]

      Liu, K.; Guo, Y. L.; Liu, Y. Q. Sci. China-Technol. Sci. 2019, 62, 1255.  doi: 10.1007/s11431-018-9503-8

    12. [12]

      Guo, Y. L.; Yu, G.; Liu, Y. Q. Adv. Mater. 2010, 22, 4427.  doi: 10.1002/adma.201000740

    13. [13]

      Chortos, A.; Lim, J.; To, J. W. F.; Vosgueritchian, M.; Dusseault, T. J.; Kim, T. H.; Hwang, S.; Bao, Z. N. Adv. Mater. 2014, 26, 4253.  doi: 10.1002/adma.201305462

    14. [14]

      Xu, J.; Wang, S. H.; Wang, G. J. N.; Zhu, C. X.; Luo, S. C.; Jin, L. H.; Gu, X. D.; Chen, S. C.; Feig, V. R.; To, J. W. F.; Rondeau-Gagne, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y. M.; Kim, Y. H.; Yan, H.; Sinclair, R.; Zhou, D. S.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B. H.; Chung, J. W.; Bao, Z. N. Science 2017, 355, 59.  doi: 10.1126/science.aah4496

    15. [15]

      Xu, J.; Wu, H. C.; Zhu, C. X.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S. H.; Molina-Lopez, F.; Gu, X. D.; Luo, S. C.; Zhou, D. S.; Kim, Y. H.; Wang, G. J. N.; Gu, K.; Feig, V. R.; Chen, S. C.; Kim, Y.; Katsumata, T.; Zheng, Y. Q.; Yan, H.; Chung, J. W.; Lopez, J.; Murmann, B.; Bao, Z. N. Nat. Materials 2019, 18, 594.  doi: 10.1038/s41563-019-0340-5

    16. [16]

      Khatib, M.; Huynh, T. P.; Deng, Y. F.; Horev, Y. D.; Saliba, W.; Wu, W. W.; Haick, H. Small 2019, 15, 8.
       

    17. [17]

      Lu, C.; Lee, W.-Y.; Gu, X.; Xu, J.; Chou, H.-H.; Yan, H.; Chiu, Y.-C.; He, M.; Matthews, J. R.; Niu, W.; Tok, J. B.-H.; Toney, M. F.; Chen, W.-C.; Bao, Z. Adv. Electron. Mater. 2017, 3, 1600311.

    18. [18]

      Sang, M.; Cao, S. Z.; Lai, W. Y.; Huang, W. Acta Chim. Sinica 2015, 73, 770(in Chinese).
       

    19. [19]

      Wang, G.-J. N.; Shaw, L.; Xu, J.; Kurosawa, T.; Schroeder, B. C.; Oh, J. Y.; Benight, S. J.; Bao, Z. Adv. Funct. Mater. 2016, 26, 7254.

    20. [20]

      Mun, J.; Kang, J. H. O.; Zheng, Y.; Luo, O. O. C.; Wu, H. C.; Matsuhisa, N.; Xu, J.; Wang, G. J. N.; Yun, Y. J.; Xue, G.; Tok, J. B. H.; Bao, Z. N. Adv. Mater. 2019, 31, 1903912.  doi: 10.1002/adma.201903912

    21. [21]

      Sim, K.; Rao, Z. Y.; Kim, H. J.; Thukral, A.; Shim, H.; Yu, C. J. Sci. Adv. 2019, 5, 10.
       

    22. [22]

      Müller, C.; Goffri, S.; Breiby, D. W.; Andreasen, J. W.; Chanzy, H. D.; Janssen, R. A. J.; Nielsen, M. M.; Radano, C. P.; Sirringhaus, H.; Smith, P.; Stingelin-Stutzmann, N. Adv. Funct. Mater. 2007, 17, 2674.  doi: 10.1002/adfm.200601248

    23. [23]

      Peng, R.; Pang, B.; Hu, D. Q.; Chen, M. J.; Zhang, G. B.; Wang, X. H.; Lu, H. B.; Cho, K.; Qiu, L. Z. J. Mater. Chem. C 2015, 3, 3599.  doi: 10.1039/C4TC02476A

    24. [24]

      Mun, J.; Wang, G.-J. N.; Oh, J. Y.; Katsumata, T.; Lee, F. L.; Kang, J.; Wu, H.-C.; Lissel, F.; Rondeau-Gagne, S.; Tok, J. B. H.; Bao, Z. Adv. Funct. Mater. 2018, 28, 1804222.

    25. [25]

      Zhao, Y.; Gumyusenge, A.; He, J.; Qu, G.; McNutt, W. W.; Long, Y.; Zhang, H.; Huang, L.; Diao, Y.; Mei, J. Adv. Funct. Mater. 2018, 28, 1705584.  doi: 10.1002/adfm.201705584

    26. [26]

      Liang, J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X.; Chen, Y.; Pei, Q. ACS Nano 2014, 8, 1590.  doi: 10.1021/nn405887k

    27. [27]

      Liang, J. J.; Li, L.; Chen, D.; Hajagos, T.; Ren, Z.; Chou, S. Y.; Hu, W.; Pei, Q. B. Nat. Commun. 2015, 6, 7647.  doi: 10.1038/ncomms8647

    28. [28]

      Chortos, A.; Koleilat, G. I.; Pfattner, R.; Kong, D. S.; Lin, P.; Nur, R.; Lei, T.; Wang, H. L.; Liu, N.; Lai, Y. C.; Kim, M. G.; Chung, J. W.; Lee, S.; Bao, Z. N. Adv. Mater. 2016, 28, 4441.  doi: 10.1002/adma.201501828

    29. [29]

      Li, L.; Liang, J. J.; Gao, H. E.; Li, Y.; Niu, X. F.; Zhu, X. D.; Xiong, Y.; Pei, Q. B. ACS Appl. Mater. Interfaces 2017, 9, 40523.  doi: 10.1021/acsami.7b12908

    30. [30]

      Savagatrup, S.; Makaram, A. S.; Burke, D. J.; Lipomi, D. J. Adv. Funct. Mater. 2014, 24, 1169.  doi: 10.1002/adfm.201302646

    31. [31]

      Yu, Z. B.; Niu, X. F.; Liu, Z. T.; Pei, Q. B. Adv. Mater. 2011, 23, 3989.  doi: 10.1002/adma.201101986

    32. [32]

      Liang, J.; Li, L.; Niu, X.; Yu, Z.; Pei, Q. Nat. Photonics 2013, 7, 817.  doi: 10.1038/nphoton.2013.242

    33. [33]

      Wu, X.; Lan, S.; Hu, D.; Chen, Q.; Li, E.; Yan, Y.; Chen, H.; Guo, T. J. Mater. Chem. C 2019, 7, 9229.  doi: 10.1039/C9TC02385B

    34. [34]

      Zhong, J.; Wu, X.; Lan, S.; Fang, Y.; Chen, H.; Guo, T. ACS Photonics 2018, 5, 3712.  doi: 10.1021/acsphotonics.8b00729

    35. [35]

      Yang, H.; Liu, Y.; Wu, X.; Yan, Y.; Wang, X.; Lan, S.; Zhang, G.; Chen, H.; Guo, T. Adv. Electron. Mater. 2019, 1900864.
       

    36. [36]

      Kang, M.; Lee, S. A.; Jang, S.; Hwang, S.; Lee, S. K.; Bae, S.; Hong, J. M.; Lee, S. H.; Jeong, K. U.; Lim, J. A.; Kim, T. W. ACS Appl. Mater. Interfaces 2019, 11, 22575.  doi: 10.1021/acsami.9b03564

    37. [37]

      Han, S. T.; Zhou, Y.; Roy, V. A. L. Adv. Mater. 2013, 25, 5425.  doi: 10.1002/adma.201301361

    38. [38]

      Hong, S. Y.; Kim, M. S.; Park, H.; Jin, S. W.; Jeong, Y. R.; Kim, J. W.; Lee, Y. H.; Sun, L.; Zi, G.; Ha, J. S. Adv. Funct. Mater. 2019, 29, 9.
       

    39. [39]

      Zhu, C. X.; Chortos, A.; Wang, Y.; Pfattner, R.; Lei, T.; Hinckley, A. C.; Pochorovski, I.; Yan, X. Z.; To, J. W. F.; Oh, J. Y.; Tok, J. B. H.; Bao, Z. N.; Murmann, B. Nat. Electron. 2018, 1, 183.  doi: 10.1038/s41928-018-0041-0

    40. [40]

      Zhu, C.; Wu, H. C.; Nyikayaramba, G.; Bao, Z. N.; Murmann, B. IEEE Electron Device Lett. 2019, 40, 1630.  doi: 10.1109/LED.2019.2933838

    41. [41]

      Zang, Y.; Zhang, F.; Huang, D.; Di, C.-a.; Zhu, D. Adv. Mater. 2015, 27, 7979.  doi: 10.1002/adma.201503542

    42. [42]

      Shim, H.; Sim, K.; Ershad, F.; Yang, P. Y.; Thukral, A.; Rao, Z.; Kim, H. J.; Liu, Y. H.; Wang, X.; Gu, G. Y.; Gao, L.; Wang, X. R.; Chai, Y.; Yu, C. J. Sci. Adv. 2019, 5, 11.
       

    43. [43]

      Molina-Lopez, F.; Gao, T. Z.; Kraft, U.; Zhu, C.; Ohlund, T.; Pfattner, R.; Feig, V. R.; Kim, Y.; Wang, S.; Yun, Y.; Bao, Z. Nat. Commun. 2019, 10, 2676.  doi: 10.1038/s41467-019-10569-3

    44. [44]

      Matsuhisa, N.; Jiang, Y.; Liu, Z. Y.; Chen, G.; Wan, C. J.; Kim, Y.; Kang, J.; Tran, H.; Wu, H. C.; You, I.; Bao, Z. N.; Chen, X. D. Adv. Electron. Mater. 2019, 5, 1900347.  doi: 10.1002/aelm.201900347

    45. [45]

      Li, Y. Z.; Wang, N. X.; Yang, A. N.; Ling, H. F.; Yan, F. Adv. Electron. Mater. 2019, 5, 7.
       

    46. [46]

      Yin, D.; Feng, J.; Ma, R.; Liu, Y. F.; Zhang, Y. L.; Zhang, X. L.; Bi, Y. G.; Chen, Q. D.; Sun, H. B. Nat. Commun. 2016, 7, 11573.  doi: 10.1038/ncomms11573

    47. [47]

      Kim, T. H.; Lee, C. S.; Kim, S.; Hur, J.; Lee, S.; Shin, K. W.; Yoon, Y. Z.; Choi, M. K.; Yang, J.; Kim, D. H.; Hyeon, T.; Park, S.; Hwang, S. ACS Nano 2017, 11, 5992.  doi: 10.1021/acsnano.7b01894

    48. [48]

      Hu, D.; Xu, X.; Miao, J.; Gidron, O.; Meng, H. Materials 2018, 11, 184.  doi: 10.3390/ma11020184

    49. [49]

      Wang, X.; Sun, J.; Dong, L.; Lv, C.; Zhang, K.; Shang, Y.; Yang, T.; Wang, J.; Shan, C.-X. Nano Energy 2019, 58, 410.  doi: 10.1016/j.nanoen.2019.01.058

    50. [50]

      Shin, H.; Sharma, B. K.; Lee, S. W.; Lee, J.-B.; Choi, M.; Hu, L.; Park, C.; Choi, J. H.; Kim, T. W.; Ahn, J.-H. ACS Appl. Mater. Interfaces 2019, 11, 14222.  doi: 10.1021/acsami.8b22135

    51. [51]

      Wang, J. X.; Lee, P. S. Nanophotonics 2017, 6, 435.  doi: 10.1515/nanoph-2016-0002

    52. [52]

      Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Science 2016, 351, 1071.  doi: 10.1126/science.aac5082

    53. [53]

      Tan, Y. J.; Godaba, H.; Chen, G.; Tan, S. T. M.; Wan, G.; Li, G.; Lee, P. M.; Cai, Y.; Li, S.; Shepherd, R. F.; Ho, J. S.; Tee, B. C. K. Nat. Materials 2020, 19, 182.  doi: 10.1038/s41563-019-0548-4

    54. [54]

      Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C.; Mei, J. G.; Kurosawa, T.; Bae, W. G.; Tok, J. B. H.; Bao, Z. N. Nat. Commun. 2015, 6, 8011.  doi: 10.1038/ncomms9011

    55. [55]

      Yin, D.; Jiang, N.-R.; Liu, Y.-F.; Zhang, X.-L.; Li, A.-W.; Feng, J.; Sun, H.-B. Light-Sci. Appl. 2018, 7, 262.
       

    56. [56]

      An, T. C.; Ling, Y. Z.; Gong, S.; Zhu, B. W.; Zhao, Y. M.; Dong, D. S.; Yap, L. W.; Wang, Y.; Cheng, W. L. Adv. Mater. Technol. 2019, 4, 1800473.  doi: 10.1002/admt.201800473

    57. [57]

      Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. Nat. Commun. 2015, 6, 10310.  doi: 10.1038/ncomms10310

    58. [58]

      Park, S.; Lee, H.; Kim, Y. J.; Lee, P. S. NPG Asia Mater. 2018, 10, 11.
       

    59. [59]

      Siddiqui, S.; Lee, H. B.; Kim, D.-I.; Le Thai, D.; Hanif, A.; Lee, N.-E. Adv. Energy Mater. 2019, 9, 1701520.
       

    60. [60]

      Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Sci. Adv. 2017, 3, 1700015.  doi: 10.1126/sciadv.1700015

    61. [61]

      Zou, Y.; Tan, P.; Shi, B.; Ouyang, H.; Jiang, D.; Liu, Z.; Li, H.; Yu, M.; Wang, C.; Qu, X.; Zhao, L.; Fan, Y.; Wang, Z. L.; Li, Z. Nat. Commun. 2019, 10, 2695.  doi: 10.1038/s41467-019-10433-4

    62. [62]

      Zhao, S.; Zhu, R. Acta Chim. Sinica 2019, 77, 1250(in Chinese).
       

    63. [63]

      Qian, X.; Su, M.; Li, F. Y.; Song, Y. L. Acta Chim. Sinica 2016, 74, 565(in Chinese).
       

    64. [64]

      Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Adv. Funct. Mater. 2017, 27, 1606066.  doi: 10.1002/adfm.201606066

    65. [65]

      Liao, X. Q.; Wang, W. S.; Wang, L.; Tang, K.; Zheng, Y. J. ACS Appl. Mater. Interfaces 2019, 11, 2431.  doi: 10.1021/acsami.8b20245

    66. [66]

      Chen, H. T.; Su, Z. M.; Song, Y.; Cheng, X. L.; Chen, X. X.; Meng, B.; Song, Z. J.; Chen, D. M.; Zhang, H. X. Adv. Funct. Mater. 2017, 27, 1604434.  doi: 10.1002/adfm.201604434

    67. [67]

      Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. N. Nat. Electron. 2018, 1, 314.  doi: 10.1038/s41928-018-0071-7

    68. [68]

      Cataldi, P.; Dussoni, S.; Ceseracciu, L.; Maggiali, M.; Natale, L.; Metta, G.; Athanassiou, A.; Bayer, I. S. Adv. Sci. 2018, 5, 10.
       

    69. [69]

      Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. Adv. Mater. 2018, 30, 8.
       

    70. [70]

      Ren, Z. W.; Nie, J. H.; Xu, L.; Jiang, T.; Chen, B. D.; Chen, X. Y.; Wang, Z. L. Adv. Funct. Mater. 2018, 28, 9.
       

    71. [71]

      Trung, T. Q.; Dang, T. M. L.; Ramasundaram, S.; Toi, P. T.; Park, S. Y.; Lee, N. E. ACS Appl. Mater. Interfaces 2019, 11, 2317.  doi: 10.1021/acsami.8b19425

    72. [72]

      Trung, T. Q.; Ramasundaram, S.; Hwang, B. U.; Lee, N. E. Adv. Mater. 2016, 28, 502.  doi: 10.1002/adma.201504441

    73. [73]

      Song, Z. L.; Huang, Z.; Liu, J. Y.; Hu, Z. X.; Zhang, J. B.; Zhang, G. Z.; Yi, F.; Jiang, S. L.; Lian, J. B.; Yan, J.; Zang, J. F.; Liu, H. ACS Sens. 2018, 3, 1048.  doi: 10.1021/acssensors.8b00263

    74. [74]

      Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y.; Lee, J. H.; Bien, F.; Park, J. U. Sci. Adv. 2018, 4, 9841.  doi: 10.1126/sciadv.aap9841

    75. [75]

      Wang, Z.; Wang, X.; Li, M.; Gao, Y.; Hu, Z.; Nan, T.; Liang, X.; Chen, H.; Yang, J.; Cash, S.; Sun, N.-X. Adv. Mater. 2016, 28, 9370.  doi: 10.1002/adma.201602910

    76. [76]

      Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Nat. Commun. 2018, 9, 244.  doi: 10.1038/s41467-017-02685-9

    77. [77]

      Hsu, L. C.; Shih, C. C.; Hsieh, H. C.; Chiang, Y. C.; Wu, P. H.; Chueh, C. C.; Chen, W. C. Polym. Chem. 2018, 9, 5145.  doi: 10.1039/C8PY01283K

    78. [78]

      Ban, C. Y.; Wang, X. J.; Zhou, Z.; Mao, H. W.; Cheng, S.; Zhang, Z. P.; Liu, Z. D.; Li, H.; Liu, J. Q.; Huang, W. Sci. Rep. 2019, 9, 7.  doi: 10.1038/s41598-018-37029-0

    79. [79]

      Gui, Q. Y.; Zhou, Y.; Liao, S. L.; He, Y. L.; Tang, Y. F.; Wang, Y. P. Soft Matter 2019, 15, 393.  doi: 10.1039/C8SM02234H

    80. [80]

      Yang, M. H.; Zhao, X. L.; Tang, Q. X.; Cui, N.; Wang, Z. Q.; Tong, Y. H.; Liu, Y. C. Nanoscale 2018, 10, 18135.  doi: 10.1039/C8NR05336G

    81. [81]

      van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Talin, A. A.; Salleo, A. Nat. Materials 2017, 16, 414.  doi: 10.1038/nmat4856

    82. [82]

      Zhou, L.; Mao, J. Y.; Ren, Y.; Han, S. T.; Roy, V. A. L.; Zhou, Y. Small 2018, 14, 1703126.  doi: 10.1002/smll.201703126

    83. [83]

      Besse, N.; Rosset, S.; Zarate, J. J.; Shea, H. Adv. Mater. Technol. 2017, 2, 1700102.  doi: 10.1002/admt.201700102

    84. [84]

      Wei, J.; Wang, F.; Zhang, L. ACS Appl. Mater. Interfaces 2018, 10, 29161.  doi: 10.1021/acsami.8b09826

    85. [85]

      Zhao, P.; Xu, B.; Zhang, Y.; Li, B.; Chen, H. ACS Appl. Mater. Interfaces 2020, 12, 15716.  doi: 10.1021/acsami.0c01179

    86. [86]

      Liu, Y. R. N.; Yang, T. Y.; Zhang, Y. Y.; Qu, G.; Wei, S. S.; Liu, Z.; Kong, T. T. Adv. Mater. 2019, 31, 1902783.  doi: 10.1002/adma.201902783

    87. [87]

      Roudjane, M.; Bellemare-Rousseau, S.; Khalil, M.; Gorgutsa, S.; Miled, A.; Messaddeq, Y. Sensors 2018, 18, 973.  doi: 10.3390/s18040973

    88. [88]

      Li, Y.; Tian, X.; Gao, S.-P.; Jing, L.; Li, K.; Yang, H.; Fu, F.; Lee, J. Y.; Guo, Y.-X.; Ho, J. S.; Chen, P.-Y. Adv. Funct. Mater. 2020, 30, 1907451.  doi: 10.1002/adfm.201907451

    89. [89]

      Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J.; Lei, T.; Kwon, S. K.; Kim, Y.; Foudeh, A. M.; Ehrlich, A.; Gasperini, A.; Yun, Y.; Murmann, B.; Tok, J. B. H.; Bao, Z. N. Nature 2018, 555, 83.  doi: 10.1038/nature25494

    90. [90]

      Oh, J. Y.; Bao, Z. N. Adv. Sci. 2019, 6, 1900186.
       

    91. [91]

      Biswas, S.; Schoeberl, A.; Hao, Y. F.; Reiprich, J.; Stauden, T.; Pezoldt, J.; Jacobs, H. O. Nat. Commun. 2019, 10, 8.  doi: 10.1038/s41467-018-07894-4

    92. [92]

      Zhang, S. X.; Shao, X. F. Acta Chim. Sinica 2018, 76, 531(in Chinese).
       

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(96)
  • Abstract views(5220)
  • HTML views(1267)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return