Citation: Wei Zheyu, Chang Yalin, Yu Han, Han Sheng, Wei Yongge. Application of Anderson Type Heteropoly Acids as Catalysts in Organic Synthesis[J]. Acta Chimica Sinica, ;2020, 78(8): 725-732. doi: 10.6023/A20050187 shu

Application of Anderson Type Heteropoly Acids as Catalysts in Organic Synthesis

  • Corresponding author: Yu Han, hanyu0220@tsinghua.edu.cn Han Sheng, hansheng654321@sina.com Wei Yongge, yonggewei@tsinghua.edu.cn
  • Received Date: 26 May 2020
    Available Online: 29 June 2020

    Fund Project: the National Natural Science Foundation of China 21971134the National Natural Science Foundation of China 21631007Project supported by the National Natural Science Foundation of China (Nos. 21971134, 21631007, 21225103)the National Natural Science Foundation of China 21225103

Figures(11)

  • Anderson type heteropoly acids, also known as Anderson type polyoxometalates, are a kind of important structures in polyoxometalates. Their general structural formula can be expressed as [XM6O24]n, in which the core heteroatom X can almost be replaced by almost any metal or nonmetal element in the periodic table. Due to unique structure easy to be modified with organic ligands and designability, as well as their potential applications in materials, catalysis and medicines, Anderson type heteropoly acids have been widely concerned by researchers. In recent years, the application of Anderson type heteropoly acids in organic synthesis has gradually shown great significance for the study of green catalytic process. In this paper, the catalytic application of Anderson type heteropoly acids in organic synthesis has been reviewed and summarized according to the structure classification of Anderson type polyoxometalates. This will be helpful for the researchers to further study the catalytic application of Anderson heteropoly acids and provides new ideas for the research of green catalysis.
  • 加载中
    1. [1]

      Chen, W. L.; Wang, E. B. Polyoxometalate Chemistry, Science Press, Beijing, 2013, p. 38.

    2. [2]

      Wang, N. J. Changchun Normal Univ. 2015, 34, 58.

    3. [3]

      Wang, F. Ph.D. Dissertation, Northeast Normal University, Shenyang, 2007 (in Chinese).

    4. [4]

      Qin, Z. X.; Li, Q.; Huang, Y. C.; Zhang, J. W.; Li, G.; Wei, Y. G. Chin. Sci. Bull. 2018, 63, 3263.  doi: 10.1360/N972018-00853

    5. [5]

      Zhang, J. W.; Huang, Y. C.; Hao, J.; Wei, Y. G. Inorg. Chem. Front. 2017, 4, 1215.

    6. [6]

      Wei, Z. Y.; Wei, Y. G. CN 104152980A, 2014 [Chem. Abstr. 2014, 9, 60].

    7. [7]

      Hu, C. W.; Zhen, H.; Xu, L.; Wang, E. B. J. Mol. Sci. 1997, (1), 45 (in Chinese).
       

    8. [8]

      Wu, P. S.; Zhang, H. Y.; Xu, L; De, G. J. R. H.; Hu, C. W.; Wang, E. B. J. Northeast Normal Univ. (Nat. Sci.) 2001, 4, 51 (in Chinese).
       

    9. [9]

      Guo, S. R.; Kong, Y. M.; Peng, J.; Wang, E. B. Chem. Bull. 2007, 10, 748 (in Chinese).
       

    10. [10]

      Wei, Y. G. New progress of Polyacid Imine Derivatives, Abstracts of the 6th annual academic meeting and member congress of China Crystal Society (functional molecular crystal branch), China Crystal Society, 2016, p. 28.

    11. [11]

      Wei, Z. Y.; Li, Q.; Wei, Y. G. J. Mol. Sci. 2017, 33, 391 (in Chinese).
       

    12. [12]

      Song, Y. F.; Wei, Y. G. Chin. Sci. Bull. 2018, 63, 3261 (in Chinese).
       

    13. [13]

      Yu, F. L.; Liu, C. Y.; Xie, P. H.; Yuan, B.; Xie, C. X.; Yu, S. T. RSC Adv. 2015, 5, 85540.  doi: 10.1039/C5RA16013H

    14. [14]

      Lei, Y.; Li, Z.; Yuan, Z.; Wang, R.; Sunee, W.; Dong, Z. L. Sep. Purif. Technol. 2015, 151, 155.  doi: 10.1016/j.seppur.2015.05.045

    15. [15]

      Li, P. C. M.S. Dissertation, Yantai University, Yantai, 2017 (in Chinese).

    16. [16]

      Yang, W.; Hou, Y. J.; An, H. Y. J. Mol. Sci. 2017, 33, 385 (in Chinese).
       

    17. [17]

      Sun, L.; Su, T.; Li, P. Catal. Lett. 2019, 149, 7.  doi: 10.1007/s10562-018-2589-8

    18. [18]

      Ji, H. B.; She, Y. B. Prog. Chem. Eng. 2007, 26, 605 (in Chinese).
       

    19. [19]

      Li, J. J.; Wu, F. Textbook of introduction to green chemistry, Wuhan University Press, WuHan, 2015, p. 8.

    20. [20]

      He, Y. M.; Sun, Y. H.; Han, B. X. Chin. Sci. Bull. 2015, 16, 1421.

    21. [21]

      Song, J. L.; Han, B. X. Natl. Sci. Rev. 2015, 3, 255.

    22. [22]

      SD, K.; Gokavi, G. S. Res. J. Chem. 2016, 6, 17.

    23. [23]

      Yu, H.; Zhai, Y. Y.; Dai, G. Y.; Ru, S.; Han, S.; Wei, Y. G. Chem.-Eur. J. 2017, 23, 13883.  doi: 10.1002/chem.201703185

    24. [24]

      Yu, H.; Ru, S.; Zhai, Y. Y.; Dai, G. Y.; Han, S.; Wei, Y. G. ChemCatChem 2018, 10, 1253.  doi: 10.1002/cctc.201701599

    25. [25]

      Zhai, Y. Y.; Zhang, M. Q.; Fang, H. B.; Ru, S.; Yu, H.; Zhao, W. S.; Wei, Y. G. Org. Chem. Front. 2018, 5, 3454.  doi: 10.1039/C8QO00833G

    26. [26]

      Zhang, M. Q.; Zhai, Y. Y.; Ru, S.; Zang, D. J.; Han, S.; Yu, H.; Wei, Y. G. Chem. Commun. 2018, 54, 10164.  doi: 10.1039/C8CC03722A

    27. [27]

      Wang, J. J.; Zhai, Y. Y.; Wang, Y.; Yu, H.; Zhao, W. S.; Wei, Y. G. Dalton Trans. 2018, 47, 13323.  doi: 10.1039/C8DT03003K

    28. [28]

      Sawant, J. D.; Patil, K. K.; Gokavi, G. S. Transition Met. Chem. 2019, 44, 153.  doi: 10.1007/s11243-018-0279-4

    29. [29]

      Wei, Z. Y.; Ru, S.; Zhao, Q. X.; Yu, H.; Zhang, G.; Wei, Y. G. Green Chem. 2019, 21, 4069.  doi: 10.1039/C9GC01248F

    30. [30]

      Zhou, Z. H.; Dai, G. Y.; Ru, S.; Yu, H.; Wei, Y. G. Dalton Trans. 2019, 48, 14201.  doi: 10.1039/C9DT02997D

    31. [31]

      Yu, H.; Wang, J. J.; Wu, Z. K.; Zhao, Q. X.; Dan, D. M.; Han, S.; Tang, J. J.; Wei, Y. G. Green Chem. 2019, 21, 4550.  doi: 10.1039/C9GC02053E

    32. [32]

      Yu, H.; Wu, Z. K.; Wei, Z. Y.; Zhai, Y. Y.; Ru, S.; Zhao, Q. X.; Wang, J. J.; Han, S.; Wei, Y. G. Commun. Chem. 2019, 2, 1.  doi: 10.1038/s42004-018-0104-1

    33. [33]

      Wu, Z. K.; Zhai, Y. Y.; Zhao, W. S.; Wei, Z. Y.; Yu, H.; Han, S.; Wei, Y. G. Green Chem. 2020, 22, 737.  doi: 10.1039/C9GC03564H

    34. [34]

      Xu, J. J.; Zhu, Z. G.; Yuan, Z. L.; Su, T.; Zhao, Y. C.; Ren, W. Z.; Zhang, Z. H.; Lu, H. Y. J. Taiwan Inst. Chem. E. 2019, 104, 8.  doi: 10.1016/j.jtice.2019.08.006

    35. [35]

      Wang, J. J.; Yu, H.; Wei, Z. Y.; Qi, L.; Xuan, W. M.; Wei, Y. G. Research, 2020, 1, 3875920.

    36. [36]

      Luo, J. H.; Huang, Y. C.; Ding, B.; Wang, P. M.; Geng, X. F.; Zhang, J. W.; Wei, Y. G. Catalysts 2018, 8, 121.  doi: 10.3390/catal8030121

    37. [37]

      Yu, H.; Ru, S.; Dai, G. Y.; Zhai, Y. Y.; Lin, H. L.; Han, S.; Wei, Y. G. Angew. Chem. Int. Ed. 2017, 56, 3867.  doi: 10.1002/anie.201612225

    38. [38]

      She, S.; Mu, L.; Li, Q.; Huang, Z. H.; Wei, Y. G.; Yin, P. C. ChemPlusChem 2019, 11, 84.

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(70)
  • Abstract views(2986)
  • HTML views(921)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return