Citation: Liu Qingqing, Zhang Yihan, Gao Can, Wang Tianyu, Hu Wenping, Dong Huanli. Synthesis and Property Study of Field-effect Emissive Conjugated Polymers Based on Styrene and Benzothiadiazole[J]. Acta Chimica Sinica, ;2020, 78(9): 945-953. doi: 10.6023/A20050170 shu

Synthesis and Property Study of Field-effect Emissive Conjugated Polymers Based on Styrene and Benzothiadiazole

  • Corresponding author: Dong Huanli, dhl522@iccas.ac.cn
  • Received Date: 16 May 2020
    Available Online: 24 June 2020

    Fund Project: Beijing National Laboratory for Molecular Sciences BNLMS-CXXM-202012the National Natural Science Foundation of China 51725304Project supported by the National Key Research and Development Project (Nos. 2017YFA0204503, 2018YFA0703200), the National Natural Science Foundation of China (Nos. 61890943, 51725304) and Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202012)the National Natural Science Foundation of China 61890943the National Key Research and Development Project 2018YFA0703200the National Key Research and Development Project 2017YFA0204503

Figures(7)

  • Conjugated polymer materials with good photoelectric performance, solution processing ability and flexibility are widely used as active layers in optoelectronic devices. Here, using Stille and Suzuki coupling reactions, we designed and synthesized two new conjugated polymers, poly(1,2-bis(2,5-bis(iso-octyloxy)phenylenevinylene-2,1,3-benzothiadiazole)) (PVBT) and poly(1,2-bis(2,5-bis(n-octyloxy)phenylenevinylene-2,1,3-benzothiadiazole)) (nPVBT), which contain structural element styrene fragments and an conjugated unit benzothiadiazole. Styrene fragments are conducive to luminescent properties of materials, such as phenylenevinylene (PPV) derivatives, while benzothiadiazole unit is electron withdrawing, and matches with many structural units of a donor. The conjugated polymers were characterized by gel permeation chromatography (GPC), elemental analysis and differential scanning calorimetry (DSC). The results indicate that each of these two polymers has good thermal stability. Their melting points were around 240~250℃ and decomposition temperatures around 380℃. Due to the presence of the structural alkoxy chains, these two polymers exhibit good solubility, which is conducive to solution-processed film formation. PVBT and nPVBT have strong fluorescence characters with maximum emission in the range of 590~605 nm. The photoluminescence quantum yield of these two polymers in dichloromethane solution (1×10-5 mol·L-1) is 23%~35%, and 12%~20% in solid films, which are annealed at 180℃ for 10 min. Due to benzothiadiazole's regulation of molecular energy levels, the highest occupied molecular orbital (HOMO) energy level of PVBT and nPVBT were modulated to be -5.73 and -5.61 eV, and the lowest unoccupied molecular orbital (LUMO) energy level were -3.37 and -3.32 eV, respectively. Typical p-type transporting property was determined by using PVBT and nPVBT films as active layers in organic field effect transistors. Because of the improved conjugation of the skeleton structures and the close packing between benzothiadiazole of main chains, these two conjugated polymers both exhibit efficient charge transport characteristics with saturation hole carrier mobility is up to 1.1×10-4 cm2·V-1·s-1 and high switching on/off ratio of 103~104. This work provides new insight into the development of high-performance optoelectronic conjugated polymer materials and sheds light on the research of organic optoelectronic integrated devices.
  • 加载中
    1. [1]

      Huang, F.; Bo, Z. S.; Geng, Y. H.; Wang, X. H.; Wang, L. X.; Ma, Y. G.; Hou, J. H.; Hu, W. P.; Pei, J.; Dong, H. L.; Wang, S.; Li, Z.; Shuai, Z. G.; Li, Y. F.; Cao, Y. Acta Polym. Sin. 2019, 50, 988(in Chinese).
       

    2. [2]

      Dong, H. L.; Fu, X. L.; Liu, J.; Wang, Z. R.; Hu, W. P. Adv. Mater. 2013, 25, 6158.  doi: 10.1002/adma.201302514

    3. [3]

      Xu, Y.; Yao, H. F.; Hou, J. H. Chin. J. Chem. 2019, 37, 207(in Chinese).
       

    4. [4]

      Yang, C. Y.; Jin, W. L.; Wang, J.; Ding, Y. F.; Nong, S.; Shi, K.; Lu, Y.; Dai, Y. Z.; Zhuang, F. D.; Lei, T.; Di, C. A.; Zhu, D. B.; Wang, J. Y.; Pei, J. Adv. Mater. 2018, 30, 1802850.  doi: 10.1002/adma.201802850

    5. [5]

      Li, Q. Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962.  doi: 10.1021/acs.accounts.0c00060

    6. [6]

      Thomas, T. H.; Harkin, D. J.; Gillett, A. J.; Lemaur, V.; Nikolka, M.; Sadhanala, A.; Richter, J. M.; Armitage, J.; Chen, H.; McCulloch, I.; Menke, S. M.; Olivier, Y.; Beljonne, D.; Sirringhaus, H. Nat. Commun. 2019, 10, 2614.  doi: 10.1038/s41467-019-10277-y

    7. [7]

      Feng, L. L.; Gu, P. C.; Dong, H. L.; Yao, Y. F.; Hu, W. P. Chin. Sci. Bull. 2015, 60, 2169(in Chinese).
       

    8. [8]

      Ren, X. C.; Yang, F. X.; Gao, X.; Cheng, S. S.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Adv. Energy Mater. 2018, 8, 1801003.  doi: 10.1002/aenm.201801003

    9. [9]

      Zheng, Z.; Ni, Z. J.; Zhang, X. T.; Zhen, Y. G.; Dong, H. L.; Zhang, J.; Hu, W. P. Sci. China Mater. 2019, 62, 813(in Chinese).
       

    10. [10]

      Ni, Z. J.; Dong, H. L.; Wang, H. L.; Ding, S.; Zou, Y.; Zhao, Q.; Zhen, Y. G.; Liu, F.; Jiang, L.; Hu, W. P. Adv. Mater. 2018, 30, 1704843.  doi: 10.1002/adma.201704843

    11. [11]

      Ni, Z. J.; Wang, H. L.; Dong, H. L.; Dang, Y. F.; Zhao, Q.; Zhang, X. T.; Hu, W. P. Nat. Chem. 2019, 11, 271.  doi: 10.1038/s41557-018-0200-y

    12. [12]

      Guo, Y. L. Acta Polym. Sin. 2020, 51, 448(in Chinese).
       

    13. [13]

      Yao, Y. F.; Dong, H. L.; Liu, F.; Russell, T. P.; Hu, W. P. Adv. Mater. 2017, 29, 1701251.  doi: 10.1002/adma.201701251

    14. [14]

      Zhao, S.; Zhu, R. Acta Chim. Sinica 2019, 77, 1250(in Chinese).
       

    15. [15]

      Qiu, G. G.; Jiang, Z. Y.; Ni, Z. J.; Wang, H. L.; Dong, H. L.; Zhang, J. Q.; Zhang, X. T.; Shu, Z. B.; Lu, K.; Zhen, Y. G.; Wei, Z. X.; Hu, W. P. J. Mater. Chem. C 2017, 5, 566.  doi: 10.1039/C6TC04271F

    16. [16]

      Gu, P. C.; Hu, M. X.; Ding, S.; Zhao, G. Y.; Yao, Y. F.; Liu, F.; Zhang, X. T.; Dong, H. L.; Wang, X. K.; Hu, W. P. Chinese Chem. Lett. 2018, 29, 1675(in Chinese).
       

    17. [17]

      Li, C. G.; Wang, Y. S.; Zou, Y.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Angew. Chem. Int. Ed. 2020, 59, 9403.  doi: 10.1002/anie.202002644

    18. [18]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    19. [19]

      Dong, H. L.; Yan, Q. Q.; Hu, W. P. Acta Polym. Sin. 2017, 8, 1246(in Chinese).
       

    20. [20]

      Qian, X.; Su, M.; Li, F. Y.; Song, Y. L. Acta Chim. Sinica 2016, 74, 565(in Chinese).
       

    21. [21]

      Xu, X. N.; Han, B.; Yu, X.; Zhu, Y. Y. Acta Chim. Sinica 2019, 77, 485(in Chinese).
       

    22. [22]

      Zhang, Y. H.; Ye, J.; Liu, Z. Y.; Liu, Q. Q.; Guo, X. F.; Dang, Y. F.; Zhang, J. Q.; Wei, Z. X.; Wang, Z. X.; Wang, Z. H.; Dong, H. L.; Hu, W. P. J. Mater. Chem. C 2020, DOI:10.1039/D0TC01174F.  doi: 10.1039/D0TC01174F

    23. [23]

      Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W. Y.; Huang, W. Acta Chim. Sinica 2014, 72, 158(in Chinese).
       

    24. [24]

      Wang, Z. W.; Guo, S. J.; Li, H. W.; Wang, B.; Sun, Y. T.; Xu, Z. Y.; Chen, X. S.; Wu, K. J.; Zhang, X. T.; Xing, F. F.; Li, L. Q.; Hu, W. P. Adv. Mater. 2019, 31, 1805630.
       

    25. [25]

      Hepp, A.; Heil, H.; Weise, W.; Ahles, M.; Schmechel, R.; Seggern, H. V. Phys. Rev. Lett. 2003, 91, 157406.  doi: 10.1103/PhysRevLett.91.157406

    26. [26]

      Zhang, C. C.; Chen, P. L.; Hu, W. P. Small 2016, 12, 1252.  doi: 10.1002/smll.201502546

    27. [27]

      Muhieddine, K.; Ullah, M.; Pal, B. N.; Burn, P.; Namdas, E. B. Adv. Mater. 2014, 26, 6410.  doi: 10.1002/adma.201400938

    28. [28]

      Qin, Z. S.; Gao, H. K.; Liu, J. Y.; Zhou, K.; Li, J.; Dang, Y. Y.; Huang, L.; Deng, H. X.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Adv. Mater. 2019, 31, 1903175.  doi: 10.1002/adma.201903175

    29. [29]

      Liu, C. F.; Liu, X.; Lai, W. Y.; Huang, W. Adv. Mater. 2018, 30, 1802466.  doi: 10.1002/adma.201802466

    30. [30]

      Ma, Y. G.; Shen, J. C. Sci. Sin. Chim. 2007, 37, 105(in Chinese).
       

    31. [31]

      Zhang, X. T.; Dong, H. L.; Hu, W. P. Adv. Mater. 2018, 30, 1801048.  doi: 10.1002/adma.201801048

    32. [32]

      Xie, Z. Y.; Liu, D.; Zhang, Y. H.; Liu, Q. Q.; Dong, H. L.; Hu, W. P. Chem. J. Chin. Univ. 2020, 41, 1179(in Chinese).
       

    33. [33]

      Liu, D.; De, J. B.; Gao, H. K.; Ma, S. Q.; Ou, Q.; Li, S.; Qin, Z. S.; Dong, H. L.; Liao, Q.; Xu, B.; Peng, Q.; Shuai, Z. G.; Tian, W. J.; Fu, H. B.; Zhang, X. T.; Zhen, Y. G.; Hu, W. P. J. Am. Chem. Soc. 2020, 142, 6332.  doi: 10.1021/jacs.0c00871

    34. [34]

      Liu, H. C.; Yao, L.; Li, B.; Chen, X. K.; Gao, Y.; Zhang, S. T.; Li, W. J.; Lu, P.; Yang, B.; Ma, Y. G. Chem. Commun. 2016, 52, 7356.  doi: 10.1039/C6CC01993E

    35. [35]

      Chen, M. Y.; Zhao, Y.; Yan, L. J.; Yang, S.; Zhu, Y. N.; Murtaza, I.; He, G. F.; Meng, H.; Huang, W. Angew. Chem. Int. Ed. 2016, 128, 1.  doi: 10.1002/ange.201510990

    36. [36]

      Chen, Z. K.; Lee, N. H. S.; Huang, W. Macromolecules 2003, 36, 1009.  doi: 10.1021/ma021221n

    37. [37]

      Burroughes, J. H.; Bradley, D. D. C.; Brown, A.; Marks, R. R.N.; Mackay, K.; Friend, R. H.; Burnst, P. L.; Holmest A. B. Nature 1990, 347, 539.  doi: 10.1038/347539a0

    38. [38]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.  doi: 10.1126/science.270.5243.1789

    39. [39]

      Tessler, N.; Denton, G. J.; Friend, R. H. Nature 1996, 382, 695.  doi: 10.1038/382695a0

    40. [40]

      Zaumseil, J.; Friend, R. H.; Sirringhaus, H. Nat. Mater. 2006, 5, 69.  doi: 10.1038/nmat1537

    41. [41]

      Gambino, S.; Bansal, A. K.; Samuel, I. D. W. Org. Electron. 2013, 14, 1980.  doi: 10.1016/j.orgel.2013.03.038

    42. [42]

      Johansson, D. M.; Theander, M.; Srdanov, G.; Yu, G.; Inganas, O.; Andersson, M. R. Macromolecules 2001, 34, 3716.  doi: 10.1021/ma001921x

    43. [43]

      Anant, P.; Lucas, N. T.; Jacob, J. Org. Lett. 2008, 10, 5533.  doi: 10.1021/ol8022837

    44. [44]

      Zhang, W. M.; Smith, J.; Watkins, S. E.; Gysel, R.; McGehee M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2010, 132, 11437.  doi: 10.1021/ja1049324

    45. [45]

      Wen, S. P.; Pei, J. N.; Zhou, Y. H.; Li, P. F.; X, L. L.; Li, Y. W.; Xu, B.; Tian, W. J. Macromolecules 2009, 42, 4977.  doi: 10.1021/ma900598c

    46. [46]

      Gwinner, M. C.; Kabra, D.; Roberts, M.; Brenner, T. J. K.; Wallikewitz, B. H.; McNeill, C. R.; Friend, R. H.; Sirringhaus, H. Adv. Mater. 2012, 24, 2728.  doi: 10.1002/adma.201104602

    47. [47]

      Lei, T.; Dou, J. H.; Pei, J. Adv. Mater. 2012, 24, 6457.  doi: 10.1002/adma.201202689

    48. [48]

      Shahid, M.; Ashraf, R. S.; Klemm, E.; Sensfuss, S. Macromolecules 2006, 39, 7844.  doi: 10.1021/ma061231e

    49. [49]

      Li, Y. F.; Cao, Y.; Gao, J.; Wang, D. L.; Yu, G.; Heeger, A. J. Synthetic Met. 1999, 99, 243.  doi: 10.1016/S0379-6779(99)00007-7

    50. [50]

      Sirringhaus, H. Adv. Mater. 2014, 26, 1319.  doi: 10.1002/adma.201304346

    51. [51]

      Rivnay, J. M. S. C.; Miller, C. E.; Salleo, A.; Toney, M. F. Chem. Rev. 2012, 112, 5488.  doi: 10.1021/cr3001109

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(9)
  • Abstract views(2218)
  • HTML views(285)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return