Citation: Feng Boxu, Zhuang Xiaodong. Carbon-Enriched meso-Entropy Materials: from Theory to Cases[J]. Acta Chimica Sinica, ;2020, 78(9): 833-847. doi: 10.6023/A20050167 shu

Carbon-Enriched meso-Entropy Materials: from Theory to Cases

  • Corresponding author: Zhuang Xiaodong, zhuang@sjtu.edu.cn
  • Received Date: 15 May 2020
    Available Online: 28 June 2020

    Fund Project: National Key Research and Development Program of China 2017YFE9134000Shanghai Pujiang Talent Program 18PJ1406100the National Natural Science Foundation of China 21720102002the National Natural Science Foundation of China 51811530013the National Natural Science Foundation of China Excellent Young Scientists Fund 51722304Project supported by the National Natural Science Foundation of China Excellent Young Scientists Fund (No. 51722304), National Key Research and Development Program of China (No. 2017YFE9134000), the National Natural Science Foundation of China (Nos. 51973114, 21720102002, 51811530013), Shanghai Pujiang Talent Program (No. 18PJ1406100), Science and Technology Commission of Shanghai Municipality (No. 19JC412600).the National Natural Science Foundation of China 51973114Technology Commission of Shanghai Municipality 19JC412600

Figures(19)

  • Carbon-enriched materials, including carbon allotropes, polycyclic aromatic hydrocarbons, polymers, frameworks, etc., are rising as stars in functional materials field. Large amount of reported work focused on development of new structures with typical features for novel applications, and has long ignored the intrinsic relationship between similar structures. The superficial relationships of those carbon-enriched materials in textbook, e.g., isomers, allotropes and topological defects, are no longer enough for fundamental understanding the structure-property relationship study due to more and more carbon-enriched materials have been developed. Such disadvantage has long hindered development of new materials based on well-established material systems. In this work, meso-entropy concept is proposed for understanding and development of different kinds of carbon-enriched materials by comparing their relative entropy values. Based on theoretical models and case-to-case discussion, meso-entropy concept has been found compatible with the concept of isomers, allotropes and topological defects in carbon-enriched materials. From now on, hopefully, the meso-entropy defined relationship for carbon-enriched materials will be no longer staying at the geometric level, and provide new thinking development of new carbon-enriched materials and other meso-entropy materials.
  • 加载中
    1. [1]

      de Gennes, P. G. Angew. Chem., Int. Ed. 1992, 31, 842.  doi: 10.1002/anie.199208421

    2. [2]

      Cowie, J. M. G.; Arrighi, V. Polymers:Chemistry and Physics of Modern Materials, CRC press, New York, 2007.
       

    3. [3]

      Smalley, R. E. Angew. Chem., Int. Ed. 1997, 36, 1594.  doi: 10.1002/anie.199715941

    4. [4]

      Heeger, A. Chem. Soc. Rev. 2010, 39, 2352.  doi: 10.1039/c005384h

    5. [5]

      Geim, A.; Novoselov, K. Nat. Phys. 2010, 6, 836.
       

    6. [6]

      Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science 2002, 297, 787.  doi: 10.1126/science.1060928

    7. [7]

      Yang, N.; Yu, S.; Macpherson, J. V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G. M.; Jiang, X. Chem. Soc. Rev. 2019, 48, 157.  doi: 10.1039/C7CS00757D

    8. [8]

      Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Adv. Mater 2019, 31, 1802922.  doi: 10.1002/adma.201802922

    9. [9]

      Scott, L. T. Chem. Soc. Rev. 2015, 44, 6464.  doi: 10.1039/C4CS00479E

    10. [10]

      Dodiuk, H.; Goodman, S. H. Handbook of Thermoset Plastics:1. Introduction, William Andrew, Boston, 2013.
       

    11. [11]

      Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Angew. Chem., Int. Ed. 2009, 48, 1030.  doi: 10.1002/anie.200801863

    12. [12]

      Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, C.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese).
       

    13. [13]

      Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Adv. Mater 2018, 30, 1704303.  doi: 10.1002/adma.201704303

    14. [14]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.  doi: 10.1039/b807080f

    15. [15]

      James, S. L. Chem. Soc. Rev. 2003, 32, 276.  doi: 10.1039/b200393g

    16. [16]

      Zhang, X.-R.; Wang, X.; Fan, W.-D.; Sun, D.-F. Chin. J. Chem. 2020, 38, 509.  doi: 10.1002/cjoc.201900493

    17. [17]

      Zeng, J.-Y.; Wang, X.-S.; Zhang, X.-Z.; Zhuo, R.-X. Acta Chim. Sinica 2019, 77, 1156(in Chinese).
       

    18. [18]

      Chen, Z.-Y.; Liu, J.-W.; Cui, H.; Zhang, L.; Su, C.-Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).
       

    19. [19]

      Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.  doi: 10.1002/cjoc.201800144

    20. [20]

      Liu, Z.-L.; Li, W.; Liu, H.; Zhuang, X.-D.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese).
       

    21. [21]

      Inagaki, M.; Radovic, L. R. Carbon 2002, 40, 2279.  doi: 10.1016/S0008-6223(02)00204-X

    22. [22]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.  doi: 10.1021/cr900070d

    23. [23]

      James, D. K.; Tour, J. M. Acc. Chem. Res. 2013, 46, 2307.  doi: 10.1021/ar300127r

    24. [24]

      Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.  doi: 10.1038/363603a0

    25. [25]

      Bethune, D.; Kiang, C. H.; De Vries, M.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.  doi: 10.1038/363605a0

    26. [26]

      Zhu, S.; Xu, G. Nanoscale 2010, 2, 2538.  doi: 10.1039/c0nr00387e

    27. [27]

      Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M. E. Inorg. Chim. Acta 2017, 468, 49.  doi: 10.1016/j.ica.2017.07.021

    28. [28]

      Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744.  doi: 10.1021/cr500304f

    29. [29]

      Jensen, W. B. J. Chem. Edu. 2006, 83, 838.  doi: 10.1021/ed083p838

    30. [30]

      Petrucci, R. H.; Harwood, W. S.; Herring, F. G. General Chemistry:Principles and Modern Applications, Vol. 1, Prentice Hall, New York, 2002.
       

    31. [31]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    32. [32]

      Yazyev, O. V.; Louie, S. G. Phys. Rev. B 2010, 81, 195420.  doi: 10.1103/PhysRevB.81.195420

    33. [33]

      Liu, Y.; Yakobson, B. I. Nano Lett. 2010, 10, 2178.  doi: 10.1021/nl100988r

    34. [34]

      Huang, P. Y.; Ruiz-Vargas, C. S.; Van Der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. Nature 2011, 469, 389.  doi: 10.1038/nature09718

    35. [35]

      Lu, J.; Bao, Y.; Su, C. L.; Loh, K. P. ACS Nano 2013, 7, 8350.  doi: 10.1021/nn4051248

    36. [36]

      Fultz, B. Prog. Mater. Sci. 2010, 55, 247.  doi: 10.1016/j.pmatsci.2009.05.002

    37. [37]

      Butler, K. T.; Walsh, A.; Cheetham, A. K.; Kieslich, G. Chem. Sci. 2016, 7, 6316.  doi: 10.1039/C6SC02199A

    38. [38]

      Wei, J. Ind. Eng. Chem. Res. 1999, 38, 5019.  doi: 10.1021/ie990588m

    39. [39]

      Karplus, M.; Kushick, J. N. Macromolecules 1981, 14, 325.  doi: 10.1021/ma50003a019

    40. [40]

      Levy, R. M.; Karplus, M.; Kushick, J.; Perahia, D. Macromolecules 1984, 17, 1370.  doi: 10.1021/ma00137a013

    41. [41]

      Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.  doi: 10.1002/j.1538-7305.1948.tb01338.x

    42. [42]

      Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walsh, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538.  doi: 10.1039/C5CC06190C

    43. [43]

      Nyman, J.; Day, G. M. CrystEngComm 2015, 17, 5154.  doi: 10.1039/C5CE00045A

    44. [44]

      Doak, J. W.; Wolverton, C.; Ozoliņš, V. Phys. Rev. B 2015, 92, 174306.  doi: 10.1103/PhysRevB.92.174306

    45. [45]

      Rhein, R. K.; Dodge, P. C.; Chen, M.-H.; Titus, M. S.; Pollock, T. M.; Van der Ven, A. Phys. Rev. B 2015, 92, 174117.  doi: 10.1103/PhysRevB.92.174117

    46. [46]

      Vela, S.; Mota, F.; Deumal, M.; Suizu, R.; Shuku, Y.; Mizuno, A.; Awaga, K.; Shiga, M.; Novoa, J. J.; Ribas-Arino, J. Nat. Commun. 2014, 5, 1.
       

    47. [47]

      Ma, F.; Zheng, H.; Sun, Y.; Yang, D.; Xu, K.; Chu, P. K. Appl. Phys. Lett. 2012, 101, 111904.  doi: 10.1063/1.4752010

    48. [48]

      Pascal, T. A.; Goddard, W. A.; Jung, Y. Proc. Natl. Acad. Sci. 2011, 108, 11794.  doi: 10.1073/pnas.1108073108

    49. [49]

      Chia-en, A. C.; Chen, W.; Gilson, M. K. Proc. Natl. Acad. Sci. 2007, 104, 1534.  doi: 10.1073/pnas.0610494104

    50. [50]

      Besara, T.; Jain, P.; Dalal, N. S.; Kuhns, P. L.; Reyes, A. P.; Kroto, H. W.; Cheetham, A. K. Proc. Natl. Acad. Sci. 2011, 108, 6828.  doi: 10.1073/pnas.1102079108

    51. [51]

      Laio, A.; Gervasio, F. L. Rep. Prog. Phys. 2008, 71, 126601.  doi: 10.1088/0034-4885/71/12/126601

    52. [52]

      Silberberg, M. Principles of General Chemistry, McGraw-Hill Education, New York, 2012.
       

    53. [53]

      Navrotsky, A.; Kleppa, O. J. Inorg. Nucl. Chem. 1968, 30, 479.  doi: 10.1016/0022-1902(68)80475-0

    54. [54]

      Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90.  doi: 10.1016/j.cplett.2008.11.061

    55. [55]

      Gyorffy, B. Phys. Rev. B 1972, 5, 2382.  doi: 10.1103/PhysRevB.5.2382

    56. [56]

      Zunger, A.; Wei, S.-H.; Ferreira, L.; Bernard, J. E. Phys. Rev. Lett. 1990, 65, 353.  doi: 10.1103/PhysRevLett.65.353

    57. [57]

      Sanchez, J. M.; Ducastelle, F.; Gratias, D. Phys. A 1984, 128, 334.  doi: 10.1016/0378-4371(84)90096-7

    58. [58]

      Nielsen, M. A.; Chuang, I. L. Phys. Today 2001, 54, 60.
       

    59. [59]

      Trucco, E. Bull. Math. Biophys. 1956, 18, 129.  doi: 10.1007/BF02477836

    60. [60]

      Lin, S.-K. Mol. Online 1996, 1, 57.
       

    61. [61]

      Agrafiotis, D. K. J. Chem. Inf. Comput. Sci. 1997, 37, 576.  doi: 10.1021/ci960156b

    62. [62]

      Godden, J. W.; Stahura, F. L.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2000, 40, 796.  doi: 10.1021/ci000321u

    63. [63]

      Godden, J. W.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2001, 41, 1060.  doi: 10.1021/ci0102867

    64. [64]

      Graham, D. J. J. Chem. Inf. Comput. Sci. 2002, 42, 215.  doi: 10.1021/ci0102923

    65. [65]

      Dehmer, M.; Varmuza, K.; Borgert, S.; Emmert-Streib, F. J. Chem. Inf. Model. 2009, 49, 1655.  doi: 10.1021/ci900060x

    66. [66]

      Graham, D. J.; Malarkey, C.; Schulmerich, M. V. J. Chem. Inf. Comput. Sci. 2004, 44, 1601.  doi: 10.1021/ci0400213

    67. [67]

      Tarko, L. J. Math. Chem. 2011, 49, 2330.  doi: 10.1007/s10910-011-9889-1

    68. [68]

      Zhdanov, Y. A. Information Entropy in Organic Chemistry, Rostov University, Rostov, Russia, 1979, p. 56.
       

    69. [69]

      Karreman, G. Bull. Math. Biophys. 1955, 17, 279.  doi: 10.1007/BF02477754

    70. [70]

      Levine, R. Annu. Rev. Phys. Chem. 1978, 29, 59.  doi: 10.1146/annurev.pc.29.100178.000423

    71. [71]

      Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90.  doi: 10.1016/j.cplett.2008.11.061

    72. [72]

      H, M.; Schmider, H. L.; Weaver, D. F.; Smith Jr., V. H.; Sagar, R. P.; Esquivel, R. O. Int. J. Quantum Chem. 2000, 77, 376.  doi: 10.1002/(SICI)1097-461X(2000)77:1<376::AID-QUA37>3.0.CO;2-3

    73. [73]

      Kobozev, N. Russ. J. Phys. Chem. A 1966, 40, 281.
       

    74. [74]

      Haken, H. Information and Self-Organization. A Macroscopic Approach to Complex Systems, Springer-Verlag, Berlin, 1988, p. 240.
       

    75. [75]

      García-Garibay, M. A. Photochem. Photobiol. Sci. 2010, 9, 1574.  doi: 10.1039/c0pp00248h

    76. [76]

      Nosonovsky, M. Philos. Trans. R. Soc., A 2010, 368, 4755.  doi: 10.1098/rsta.2010.0179

    77. [77]

      Li, H.-L. College Physics 2004, 12, 37(in Chinese).
       

    78. [78]

      Hartley, R. V. L. Bell Syst. Tech. J. 1928, 7, 535.  doi: 10.1002/j.1538-7305.1928.tb01236.x

    79. [79]

      Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.  doi: 10.1002/j.1538-7305.1948.tb01338.x

    80. [80]

      Nemcsics, A.; Nagy, S.; Mojzes, I.; Schwedhelm, R.; Woedtke, S.; Adelung, R.; Kipp, L. Vacuum 2009, 84, 152.  doi: 10.1016/j.vacuum.2009.04.060

    81. [81]

      Torrens, F.; Castellano, G. Microelectron. J. 2007, 38, 1109.  doi: 10.1016/j.mejo.2006.04.004

    82. [82]

      Sabirov, D. S.; Ōsawa, E. J. Chem. Inf. Model. 2015, 55, 1576.  doi: 10.1021/acs.jcim.5b00334

    83. [83]

      Kohn, W. Rev. Mod. Phys. 1999, 71, S59.

    84. [84]

      Goldstein, J. Emergence 1999, 1, 49.  doi: 10.1207/s15327000em0101_4

    85. [85]

      Chen, X.; Gu, Z.-C.; Wen, X.-G. Phys. Rev. B 2010, 82, 155138.  doi: 10.1103/PhysRevB.82.155138

    86. [86]

      Holzhey, C.; Larsen, F.; Wilczek, F. Nucl. Phys. B 1994, 424, 443.  doi: 10.1016/0550-3213(94)90402-2

    87. [87]

      Calabrese, P.; Cardy, J. J. Stat. Mech.:Theory Exp. 2004, 2004, P06002.
       

    88. [88]

      Kitaev, A.; Preskill, J. Phys. Rev. Lett. 2006, 96, 110404.  doi: 10.1103/PhysRevLett.96.110404

    89. [89]

      Levin, M.; Wen, X.-G. Phys. Rev. Lett. 2006, 96, 110405.  doi: 10.1103/PhysRevLett.96.110405

    90. [90]

      Brehm, E.; Brunner, I.; Jaud, D.; Schmidt-Colinet, C. Fortschr. Phys. 2016, 64, 516.  doi: 10.1002/prop.201600024

    91. [91]

      Moore, G.; Seiberg, N. Nucl. Phys. B 1989, 313, 16.  doi: 10.1016/0550-3213(89)90511-7

    92. [92]

      Verlinde, E. Nucl. Phys. B 1988, 300, 360.  doi: 10.1016/0550-3213(88)90603-7

    93. [93]

      Fendley, P.; Fisher, M. P. A.; Nayak, C. J. Stat. Phys. 2007, 126, 1111.  doi: 10.1007/s10955-006-9275-8

    94. [94]

      Jaud, D. Ph.D. Dissertation, Ludwig-Maximilians-Universitt München, München, 2002.
       

    95. [95]

      Jeong, B. W.; Ihm, J.; Lee, G.-D. Phys. Rev. B 2008, 78, 165403.  doi: 10.1103/PhysRevB.78.165403

    96. [96]

      Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Science 2012, 337, 209.  doi: 10.1126/science.1217529

    97. [97]

      Jin, Y.; Cheng, J.; Varma-Nair, M.; Liang, G.; Fu, Y.; Wunderlich, B.; Xiang, X. D.; Mostovoy, R.; Zettl, A. K. J. Phys. Chem. 1992, 96, 5151.
       

    98. [98]

      Atkins, P.; De Paula, J.; Friedman, R. Quanta, matter, and change:a molecular approach to physical chemistry, Oxford University Press, Oxford, 2009.
       

    99. [99]

      Grochala, W. Angew. Chem., Int. Ed. 2014, 53, 3680.  doi: 10.1002/anie.201400131

    100. [100]

      Vasiliev, O. O.; Muratov, V. B.; Kulikov, L. M.; Garbuz, V. V.; Duda, T. I. J. Superhard Mater. 2015, 37, 388.  doi: 10.3103/S1063457615060039

    101. [101]

      Muratov, V. B.; Vasil'ev, O. O.; Kulikov, L. M.; Garbuz, V. V.; Nesterenko, Y. V.; Duda, T. I. J. Superhard Mater. 2012, 34, 173.  doi: 10.3103/S1063457612030045

    102. [102]

      Lebedev, B. V.; Bykova, T. A.; Lobach, A. S. J. Therm. Anal. Calorim. 2000, 62, 257.  doi: 10.1023/A:1010139501374

    103. [103]

      Zhang, Y.; Zhao, J.; Fang, Y.; Liu, Y.; Zhao, X. Nanoscale 2018, 10, 17824.  doi: 10.1039/C8NR05465G

    104. [104]

      Mermin, N. D. Phys. Rev. 1968, 176, 250.  doi: 10.1103/PhysRev.176.250

    105. [105]

      Mermin, N. D.; Wagner, H. Phys. Rev. Lett. 1966, 17, 1307.  doi: 10.1103/PhysRevLett.17.1307

    106. [106]

      Le Doussal, P.; Radzihovsky, L. Phys. Rev. Lett. 1992, 69, 1209.  doi: 10.1103/PhysRevLett.69.1209

    107. [107]

      Iijima, S. Nature 1991, 354, 56.  doi: 10.1038/354056a0

    108. [108]

      Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.  doi: 10.1038/318162a0

    109. [109]

      Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Nat. Commun. 2014, 5, 3186.  doi: 10.1038/ncomms4186

    110. [110]

      Tian, W.-C.; Zhang, X.-Y.; Chen, Z.-Q.; Ji, H.-Y. Recent Pat. Nanotechnol. 2016, 10, 3.  doi: 10.2174/187221051001160322151412

    111. [111]

      Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379.  doi: 10.1126/science.1137201

    112. [112]

      Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C.; Terrones, H. Nano Today 2010, 5, 351.  doi: 10.1016/j.nantod.2010.06.010

    113. [113]

      Berman, D.; Erdemir, A.; Sumant, A. V. Mater. Today 2014, 17, 31.  doi: 10.1016/j.mattod.2013.12.003

    114. [114]

      Araujo, P. T.; Terrones, M.; Dresselhaus, M. S. Mater. Today 2012, 15, 98.  doi: 10.1016/S1369-7021(12)70045-7

    115. [115]

      Botello-Méndez, A. R.; Declerck, X.; Terrones, M.; Terrones, H.; Charlier, J. C. Nanoscale 2011, 3, 2868.  doi: 10.1039/c0nr00820f

    116. [116]

      Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. J. Am. Chem. Soc. 2019, 141, 17713.  doi: 10.1021/jacs.9b08060

    117. [117]

      Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Acc. Chem. Res. 2002, 35, 1096.  doi: 10.1021/ar010160v

    118. [118]

      Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.  doi: 10.1038/363603a0

    119. [119]

      Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes:Their Properties and Applications, Acedemic Press, San Diego, 1996.
       

    120. [120]

      Sun, X.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y.; Li, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 6551.  doi: 10.1021/ja8006929

    121. [121]

      Zandonella, C. Nature 2001, 410, 734.  doi: 10.1038/35071183

    122. [122]

      Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Nano Lett. 2006, 6, 1880.  doi: 10.1021/nl0608543

    123. [123]

      Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Proc. Natl. Acad. Sci. 2007, 104, 13574.  doi: 10.1073/pnas.0706508104

    124. [124]

      Odom, T. W.; Huang, J.-L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62.  doi: 10.1038/34145

    125. [125]

      Ebbesen, T.; Takada, T. Carbon 1995, 33, 973.  doi: 10.1016/0008-6223(95)00025-9

    126. [126]

      Kosaka, M.; Ebbesen, T. W.; Hiura, H.; Tanigaki, K. Chem. Phys. Lett. 1995, 233, 47.  doi: 10.1016/0009-2614(94)01416-S

    127. [127]

      Dunlap, B. I. Phys. Rev. B 1992, 46, 1933.  doi: 10.1103/PhysRevB.46.1933

    128. [128]

      Dunlap, B. I. Phys. Rev. B 1994, 49, 5643.  doi: 10.1103/PhysRevB.49.5643

    129. [129]

      Wei, D.; Liu, Y. Adv. Mater 2008, 20, 2815.  doi: 10.1002/adma.200800589

    130. [130]

      Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Nat. Mater. 2005, 4, 663.  doi: 10.1038/nmat1450

    131. [131]

      Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Nature 1999, 402, 273.  doi: 10.1038/46241

    132. [132]

      Pan, B. C.; Yang, W. S.; Yang, J. Phys. Rev. B 2000, 62, 12652.  doi: 10.1103/PhysRevB.62.12652

    133. [133]

      Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063.  doi: 10.1021/ar010166k

    134. [134]

      Feng, B.; Zhuang, X. Faraday Discuss. 2019, DOI:10.1039/C9FD00115H.  doi: 10.1039/C9FD00115H

    135. [135]

      Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.  doi: 10.1016/0040-4020(76)87002-0

    136. [136]

      Sidman, J. W.; McClure, D. S. J. Chem. Phys. 1956, 24, 757.  doi: 10.1063/1.1742604

    137. [137]

      Tétreault, N.; Muthyala, R. S.; Liu, R. S.; Steer, R. P. J. Phys. Chem. A 1999, 103, 2524.  doi: 10.1021/jp984407q

    138. [138]

      Mitchell, D. R.; Gillispie, G. D. J. Phys. Chem. 1989, 93, 4390.  doi: 10.1021/j100348a003

    139. [139]

      Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3, 2721.  doi: 10.1039/c2sc20615c

    140. [140]

      Yamaguchi, Y.; Ogawa, K.; Nakayama, K.-i.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095.  doi: 10.1021/ja410696j

    141. [141]

      Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem., Int. Ed. 2018, 57, 1322.  doi: 10.1002/anie.201711802

    142. [142]

      Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656.  doi: 10.1021/jacs.5b11008

    143. [143]

      Amir, E.; Murai, M.; Amir, R. J.; Cowart, J. S.; Chabinyc, M. L.; Hawker, C. J. Chem. Sci. 2014, 5, 4483.  doi: 10.1039/C4SC02210F

    144. [144]

      Dias, J. R. J. Phys. Org. Chem.2007, 20, 395.  doi: 10.1002/poc.1159

    145. [145]

      Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.-i.; Koganezawa, T.; Katagiri, H. J. Am. Chem. Soc. 2016, 138, 11335.  doi: 10.1021/jacs.6b06877

    146. [146]

      Hou, I. C.-Y.; Shetti, V.; Huang, S.-L.; Liu, K.-L.; Chao, C.-Y.; Lin, S.-C.; Lin, Y.-J.; Chen, L.-Y.; Luh, T.-Y. Org. Chem. Front. 2017, 4, 773.

    147. [147]

      Sun, Q.; Hou, I. C.-Y.; Eimre, K.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Fasel, R. Chem. Commun. 2019, 55, 13466.

    148. [148]

      Jessop, P. G. Green Chem. 2011, 13, 1391.  doi: 10.1039/c0gc00797h

    149. [149]

      Ghasimi, S.; Landfester, K.; Zhang, K. A. ChemCatChem 2016, 8, 694.  doi: 10.1002/cctc.201501102

    150. [150]

      Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.  doi: 10.1039/B913880N

    151. [151]

      Ghasimi, S.; Bretschneider, S. A.; Huang, W.; Landfester, K.; Zhang, K. A. Adv. Sci. 2017, 4, 1700101.  doi: 10.1002/advs.201700101

    152. [152]

      Kishida, K.; Horike, S.; Nakagawa, K.; Kitagawa, S. Chem. Lett. 2012, 41, 425.  doi: 10.1246/cl.2012.425

    153. [153]

      Anderson Jr., A. G.; Steckler, B. M. J. Am. Chem. Soc. 1959, 81, 4941.  doi: 10.1021/ja01527a046

    154. [154]

      Barman, S.; Khutia, A.; Koitz, R.; Blacque, O.; Furukawa, H.; Iannuzzi, M.; Yaghi, O. M.; Janiak, C.; Hutter, J.; Berke, H. J. Mater. Chem. A 2014, 2, 18823.  doi: 10.1039/C4TA04393F

    155. [155]

      Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.  doi: 10.1126/science.1067208

    156. [156]

      Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309, 1350.  doi: 10.1126/science.1113247

    157. [157]

      Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 14904.  doi: 10.1021/ja0542690

    158. [158]

      Nakagawa, K.; Tanaka, D.; Horike, S.; Shimomura, S.; Higuchi, M.; Kitagawa, S. Chem. Commun. 2010, 46, 4258.  doi: 10.1039/c0cc00027b

    159. [159]

      Holovics, T. C.; Robinson, R. E.; Weintrob, E. C.; Toriyama, M.; Lushington, G. H.; Barybin, M. V. J. Am. Chem. Soc. 2006, 128, 2300.  doi: 10.1021/ja053933+

    160. [160]

      Sun, S.; Zhuang, X.; Wang, L.; Zhang, B.; Ding, J.; Zhang, F.; Chen, Y. J. Mater. Chem. C 2017, 5, 2223.  doi: 10.1039/C6TC05362A

    161. [161]

      Yang, C.; Schellhammer, K. S.; Ortmann, F.; Sun, S.; Dong, R.; Karakus, M.; Mics, Z.; Lffler, M.; Zhang, F.; Zhuang, X.; Cánovas, E.; Cuniberti, G.; Bonn, M.; Feng, X. Angew. Chem., Int. Ed. 2017, 56, 3920.  doi: 10.1002/anie.201700679

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(30)
  • Abstract views(4110)
  • HTML views(830)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return