Carbon-Enriched meso-Entropy Materials: from Theory to Cases
- Corresponding author: Zhuang Xiaodong, zhuang@sjtu.edu.cn
Citation: Feng Boxu, Zhuang Xiaodong. Carbon-Enriched meso-Entropy Materials: from Theory to Cases[J]. Acta Chimica Sinica, ;2020, 78(9): 833-847. doi: 10.6023/A20050167
de Gennes, P. G. Angew. Chem., Int. Ed. 1992, 31, 842.
doi: 10.1002/anie.199208421
Cowie, J. M. G.; Arrighi, V. Polymers:Chemistry and Physics of Modern Materials, CRC press, New York, 2007.
Smalley, R. E. Angew. Chem., Int. Ed. 1997, 36, 1594.
doi: 10.1002/anie.199715941
Heeger, A. Chem. Soc. Rev. 2010, 39, 2352.
doi: 10.1039/c005384h
Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science 2002, 297, 787.
doi: 10.1126/science.1060928
Yang, N.; Yu, S.; Macpherson, J. V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G. M.; Jiang, X. Chem. Soc. Rev. 2019, 48, 157.
doi: 10.1039/C7CS00757D
Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Adv. Mater 2019, 31, 1802922.
doi: 10.1002/adma.201802922
Scott, L. T. Chem. Soc. Rev. 2015, 44, 6464.
doi: 10.1039/C4CS00479E
Dodiuk, H.; Goodman, S. H. Handbook of Thermoset Plastics:1. Introduction, William Andrew, Boston, 2013.
Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Angew. Chem., Int. Ed. 2009, 48, 1030.
doi: 10.1002/anie.200801863
Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, C.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese).
Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Adv. Mater 2018, 30, 1704303.
doi: 10.1002/adma.201704303
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
doi: 10.1039/b807080f
James, S. L. Chem. Soc. Rev. 2003, 32, 276.
doi: 10.1039/b200393g
Zhang, X.-R.; Wang, X.; Fan, W.-D.; Sun, D.-F. Chin. J. Chem. 2020, 38, 509.
doi: 10.1002/cjoc.201900493
Zeng, J.-Y.; Wang, X.-S.; Zhang, X.-Z.; Zhuo, R.-X. Acta Chim. Sinica 2019, 77, 1156(in Chinese).
Chen, Z.-Y.; Liu, J.-W.; Cui, H.; Zhang, L.; Su, C.-Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).
Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.
doi: 10.1002/cjoc.201800144
Liu, Z.-L.; Li, W.; Liu, H.; Zhuang, X.-D.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese).
Inagaki, M.; Radovic, L. R. Carbon 2002, 40, 2279.
doi: 10.1016/S0008-6223(02)00204-X
Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.
doi: 10.1021/cr900070d
James, D. K.; Tour, J. M. Acc. Chem. Res. 2013, 46, 2307.
doi: 10.1021/ar300127r
Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
doi: 10.1038/363603a0
Bethune, D.; Kiang, C. H.; De Vries, M.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.
doi: 10.1038/363605a0
Zhu, S.; Xu, G. Nanoscale 2010, 2, 2538.
doi: 10.1039/c0nr00387e
Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M. E. Inorg. Chim. Acta 2017, 468, 49.
doi: 10.1016/j.ica.2017.07.021
Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744.
doi: 10.1021/cr500304f
Jensen, W. B. J. Chem. Edu. 2006, 83, 838.
doi: 10.1021/ed083p838
Petrucci, R. H.; Harwood, W. S.; Herring, F. G. General Chemistry:Principles and Modern Applications, Vol. 1, Prentice Hall, New York, 2002.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896
Yazyev, O. V.; Louie, S. G. Phys. Rev. B 2010, 81, 195420.
doi: 10.1103/PhysRevB.81.195420
Liu, Y.; Yakobson, B. I. Nano Lett. 2010, 10, 2178.
doi: 10.1021/nl100988r
Huang, P. Y.; Ruiz-Vargas, C. S.; Van Der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. Nature 2011, 469, 389.
doi: 10.1038/nature09718
Lu, J.; Bao, Y.; Su, C. L.; Loh, K. P. ACS Nano 2013, 7, 8350.
doi: 10.1021/nn4051248
Fultz, B. Prog. Mater. Sci. 2010, 55, 247.
doi: 10.1016/j.pmatsci.2009.05.002
Butler, K. T.; Walsh, A.; Cheetham, A. K.; Kieslich, G. Chem. Sci. 2016, 7, 6316.
doi: 10.1039/C6SC02199A
Wei, J. Ind. Eng. Chem. Res. 1999, 38, 5019.
doi: 10.1021/ie990588m
Karplus, M.; Kushick, J. N. Macromolecules 1981, 14, 325.
doi: 10.1021/ma50003a019
Levy, R. M.; Karplus, M.; Kushick, J.; Perahia, D. Macromolecules 1984, 17, 1370.
doi: 10.1021/ma00137a013
Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.
doi: 10.1002/j.1538-7305.1948.tb01338.x
Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walsh, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538.
doi: 10.1039/C5CC06190C
Nyman, J.; Day, G. M. CrystEngComm 2015, 17, 5154.
doi: 10.1039/C5CE00045A
Doak, J. W.; Wolverton, C.; Ozoliņš, V. Phys. Rev. B 2015, 92, 174306.
doi: 10.1103/PhysRevB.92.174306
Rhein, R. K.; Dodge, P. C.; Chen, M.-H.; Titus, M. S.; Pollock, T. M.; Van der Ven, A. Phys. Rev. B 2015, 92, 174117.
doi: 10.1103/PhysRevB.92.174117
Vela, S.; Mota, F.; Deumal, M.; Suizu, R.; Shuku, Y.; Mizuno, A.; Awaga, K.; Shiga, M.; Novoa, J. J.; Ribas-Arino, J. Nat. Commun. 2014, 5, 1.
Ma, F.; Zheng, H.; Sun, Y.; Yang, D.; Xu, K.; Chu, P. K. Appl. Phys. Lett. 2012, 101, 111904.
doi: 10.1063/1.4752010
Pascal, T. A.; Goddard, W. A.; Jung, Y. Proc. Natl. Acad. Sci. 2011, 108, 11794.
doi: 10.1073/pnas.1108073108
Chia-en, A. C.; Chen, W.; Gilson, M. K. Proc. Natl. Acad. Sci. 2007, 104, 1534.
doi: 10.1073/pnas.0610494104
Besara, T.; Jain, P.; Dalal, N. S.; Kuhns, P. L.; Reyes, A. P.; Kroto, H. W.; Cheetham, A. K. Proc. Natl. Acad. Sci. 2011, 108, 6828.
doi: 10.1073/pnas.1102079108
Laio, A.; Gervasio, F. L. Rep. Prog. Phys. 2008, 71, 126601.
doi: 10.1088/0034-4885/71/12/126601
Silberberg, M. Principles of General Chemistry, McGraw-Hill Education, New York, 2012.
Navrotsky, A.; Kleppa, O. J. Inorg. Nucl. Chem. 1968, 30, 479.
doi: 10.1016/0022-1902(68)80475-0
Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90.
doi: 10.1016/j.cplett.2008.11.061
Gyorffy, B. Phys. Rev. B 1972, 5, 2382.
doi: 10.1103/PhysRevB.5.2382
Zunger, A.; Wei, S.-H.; Ferreira, L.; Bernard, J. E. Phys. Rev. Lett. 1990, 65, 353.
doi: 10.1103/PhysRevLett.65.353
Sanchez, J. M.; Ducastelle, F.; Gratias, D. Phys. A 1984, 128, 334.
doi: 10.1016/0378-4371(84)90096-7
Trucco, E. Bull. Math. Biophys. 1956, 18, 129.
doi: 10.1007/BF02477836
Agrafiotis, D. K. J. Chem. Inf. Comput. Sci. 1997, 37, 576.
doi: 10.1021/ci960156b
Godden, J. W.; Stahura, F. L.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2000, 40, 796.
doi: 10.1021/ci000321u
Godden, J. W.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2001, 41, 1060.
doi: 10.1021/ci0102867
Graham, D. J. J. Chem. Inf. Comput. Sci. 2002, 42, 215.
doi: 10.1021/ci0102923
Dehmer, M.; Varmuza, K.; Borgert, S.; Emmert-Streib, F. J. Chem. Inf. Model. 2009, 49, 1655.
doi: 10.1021/ci900060x
Graham, D. J.; Malarkey, C.; Schulmerich, M. V. J. Chem. Inf. Comput. Sci. 2004, 44, 1601.
doi: 10.1021/ci0400213
Tarko, L. J. Math. Chem. 2011, 49, 2330.
doi: 10.1007/s10910-011-9889-1
Zhdanov, Y. A. Information Entropy in Organic Chemistry, Rostov University, Rostov, Russia, 1979, p. 56.
Karreman, G. Bull. Math. Biophys. 1955, 17, 279.
doi: 10.1007/BF02477754
Levine, R. Annu. Rev. Phys. Chem. 1978, 29, 59.
doi: 10.1146/annurev.pc.29.100178.000423
Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90.
doi: 10.1016/j.cplett.2008.11.061
H, M.; Schmider, H. L.; Weaver, D. F.; Smith Jr., V. H.; Sagar, R. P.; Esquivel, R. O. Int. J. Quantum Chem. 2000, 77, 376.
doi: 10.1002/(SICI)1097-461X(2000)77:1<376::AID-QUA37>3.0.CO;2-3
Haken, H. Information and Self-Organization. A Macroscopic Approach to Complex Systems, Springer-Verlag, Berlin, 1988, p. 240.
García-Garibay, M. A. Photochem. Photobiol. Sci. 2010, 9, 1574.
doi: 10.1039/c0pp00248h
Nosonovsky, M. Philos. Trans. R. Soc., A 2010, 368, 4755.
doi: 10.1098/rsta.2010.0179
Hartley, R. V. L. Bell Syst. Tech. J. 1928, 7, 535.
doi: 10.1002/j.1538-7305.1928.tb01236.x
Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.
doi: 10.1002/j.1538-7305.1948.tb01338.x
Nemcsics, A.; Nagy, S.; Mojzes, I.; Schwedhelm, R.; Woedtke, S.; Adelung, R.; Kipp, L. Vacuum 2009, 84, 152.
doi: 10.1016/j.vacuum.2009.04.060
Torrens, F.; Castellano, G. Microelectron. J. 2007, 38, 1109.
doi: 10.1016/j.mejo.2006.04.004
Sabirov, D. S.; Ōsawa, E. J. Chem. Inf. Model. 2015, 55, 1576.
doi: 10.1021/acs.jcim.5b00334
Kohn, W. Rev. Mod. Phys. 1999, 71, S59.
Goldstein, J. Emergence 1999, 1, 49.
doi: 10.1207/s15327000em0101_4
Chen, X.; Gu, Z.-C.; Wen, X.-G. Phys. Rev. B 2010, 82, 155138.
doi: 10.1103/PhysRevB.82.155138
Holzhey, C.; Larsen, F.; Wilczek, F. Nucl. Phys. B 1994, 424, 443.
doi: 10.1016/0550-3213(94)90402-2
Calabrese, P.; Cardy, J. J. Stat. Mech.:Theory Exp. 2004, 2004, P06002.
Kitaev, A.; Preskill, J. Phys. Rev. Lett. 2006, 96, 110404.
doi: 10.1103/PhysRevLett.96.110404
Levin, M.; Wen, X.-G. Phys. Rev. Lett. 2006, 96, 110405.
doi: 10.1103/PhysRevLett.96.110405
Brehm, E.; Brunner, I.; Jaud, D.; Schmidt-Colinet, C. Fortschr. Phys. 2016, 64, 516.
doi: 10.1002/prop.201600024
Moore, G.; Seiberg, N. Nucl. Phys. B 1989, 313, 16.
doi: 10.1016/0550-3213(89)90511-7
Verlinde, E. Nucl. Phys. B 1988, 300, 360.
doi: 10.1016/0550-3213(88)90603-7
Fendley, P.; Fisher, M. P. A.; Nayak, C. J. Stat. Phys. 2007, 126, 1111.
doi: 10.1007/s10955-006-9275-8
Jaud, D. Ph.D. Dissertation, Ludwig-Maximilians-Universitt München, München, 2002.
Jeong, B. W.; Ihm, J.; Lee, G.-D. Phys. Rev. B 2008, 78, 165403.
doi: 10.1103/PhysRevB.78.165403
Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Science 2012, 337, 209.
doi: 10.1126/science.1217529
Jin, Y.; Cheng, J.; Varma-Nair, M.; Liang, G.; Fu, Y.; Wunderlich, B.; Xiang, X. D.; Mostovoy, R.; Zettl, A. K. J. Phys. Chem. 1992, 96, 5151.
Atkins, P.; De Paula, J.; Friedman, R. Quanta, matter, and change:a molecular approach to physical chemistry, Oxford University Press, Oxford, 2009.
Grochala, W. Angew. Chem., Int. Ed. 2014, 53, 3680.
doi: 10.1002/anie.201400131
Vasiliev, O. O.; Muratov, V. B.; Kulikov, L. M.; Garbuz, V. V.; Duda, T. I. J. Superhard Mater. 2015, 37, 388.
doi: 10.3103/S1063457615060039
Muratov, V. B.; Vasil'ev, O. O.; Kulikov, L. M.; Garbuz, V. V.; Nesterenko, Y. V.; Duda, T. I. J. Superhard Mater. 2012, 34, 173.
doi: 10.3103/S1063457612030045
Lebedev, B. V.; Bykova, T. A.; Lobach, A. S. J. Therm. Anal. Calorim. 2000, 62, 257.
doi: 10.1023/A:1010139501374
Zhang, Y.; Zhao, J.; Fang, Y.; Liu, Y.; Zhao, X. Nanoscale 2018, 10, 17824.
doi: 10.1039/C8NR05465G
Mermin, N. D. Phys. Rev. 1968, 176, 250.
doi: 10.1103/PhysRev.176.250
Mermin, N. D.; Wagner, H. Phys. Rev. Lett. 1966, 17, 1307.
doi: 10.1103/PhysRevLett.17.1307
Le Doussal, P.; Radzihovsky, L. Phys. Rev. Lett. 1992, 69, 1209.
doi: 10.1103/PhysRevLett.69.1209
Iijima, S. Nature 1991, 354, 56.
doi: 10.1038/354056a0
Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
doi: 10.1038/318162a0
Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Nat. Commun. 2014, 5, 3186.
doi: 10.1038/ncomms4186
Tian, W.-C.; Zhang, X.-Y.; Chen, Z.-Q.; Ji, H.-Y. Recent Pat. Nanotechnol. 2016, 10, 3.
doi: 10.2174/187221051001160322151412
Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379.
doi: 10.1126/science.1137201
Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C.; Terrones, H. Nano Today 2010, 5, 351.
doi: 10.1016/j.nantod.2010.06.010
Berman, D.; Erdemir, A.; Sumant, A. V. Mater. Today 2014, 17, 31.
doi: 10.1016/j.mattod.2013.12.003
Araujo, P. T.; Terrones, M.; Dresselhaus, M. S. Mater. Today 2012, 15, 98.
doi: 10.1016/S1369-7021(12)70045-7
Botello-Méndez, A. R.; Declerck, X.; Terrones, M.; Terrones, H.; Charlier, J. C. Nanoscale 2011, 3, 2868.
doi: 10.1039/c0nr00820f
Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. J. Am. Chem. Soc. 2019, 141, 17713.
doi: 10.1021/jacs.9b08060
Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Acc. Chem. Res. 2002, 35, 1096.
doi: 10.1021/ar010160v
Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
doi: 10.1038/363603a0
Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes:Their Properties and Applications, Acedemic Press, San Diego, 1996.
Sun, X.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y.; Li, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 6551.
doi: 10.1021/ja8006929
Zandonella, C. Nature 2001, 410, 734.
doi: 10.1038/35071183
Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Nano Lett. 2006, 6, 1880.
doi: 10.1021/nl0608543
Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Proc. Natl. Acad. Sci. 2007, 104, 13574.
doi: 10.1073/pnas.0706508104
Odom, T. W.; Huang, J.-L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62.
doi: 10.1038/34145
Ebbesen, T.; Takada, T. Carbon 1995, 33, 973.
doi: 10.1016/0008-6223(95)00025-9
Kosaka, M.; Ebbesen, T. W.; Hiura, H.; Tanigaki, K. Chem. Phys. Lett. 1995, 233, 47.
doi: 10.1016/0009-2614(94)01416-S
Dunlap, B. I. Phys. Rev. B 1992, 46, 1933.
doi: 10.1103/PhysRevB.46.1933
Dunlap, B. I. Phys. Rev. B 1994, 49, 5643.
doi: 10.1103/PhysRevB.49.5643
Wei, D.; Liu, Y. Adv. Mater 2008, 20, 2815.
doi: 10.1002/adma.200800589
Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Nat. Mater. 2005, 4, 663.
doi: 10.1038/nmat1450
Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Nature 1999, 402, 273.
doi: 10.1038/46241
Pan, B. C.; Yang, W. S.; Yang, J. Phys. Rev. B 2000, 62, 12652.
doi: 10.1103/PhysRevB.62.12652
Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063.
doi: 10.1021/ar010166k
Feng, B.; Zhuang, X. Faraday Discuss. 2019, DOI:10.1039/C9FD00115H.
doi: 10.1039/C9FD00115H
Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.
doi: 10.1016/0040-4020(76)87002-0
Sidman, J. W.; McClure, D. S. J. Chem. Phys. 1956, 24, 757.
doi: 10.1063/1.1742604
Tétreault, N.; Muthyala, R. S.; Liu, R. S.; Steer, R. P. J. Phys. Chem. A 1999, 103, 2524.
doi: 10.1021/jp984407q
Mitchell, D. R.; Gillispie, G. D. J. Phys. Chem. 1989, 93, 4390.
doi: 10.1021/j100348a003
Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3, 2721.
doi: 10.1039/c2sc20615c
Yamaguchi, Y.; Ogawa, K.; Nakayama, K.-i.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095.
doi: 10.1021/ja410696j
Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem., Int. Ed. 2018, 57, 1322.
doi: 10.1002/anie.201711802
Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656.
doi: 10.1021/jacs.5b11008
Amir, E.; Murai, M.; Amir, R. J.; Cowart, J. S.; Chabinyc, M. L.; Hawker, C. J. Chem. Sci. 2014, 5, 4483.
doi: 10.1039/C4SC02210F
Dias, J. R. J. Phys. Org. Chem.2007, 20, 395.
doi: 10.1002/poc.1159
Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.-i.; Koganezawa, T.; Katagiri, H. J. Am. Chem. Soc. 2016, 138, 11335.
doi: 10.1021/jacs.6b06877
Hou, I. C.-Y.; Shetti, V.; Huang, S.-L.; Liu, K.-L.; Chao, C.-Y.; Lin, S.-C.; Lin, Y.-J.; Chen, L.-Y.; Luh, T.-Y. Org. Chem. Front. 2017, 4, 773.
Sun, Q.; Hou, I. C.-Y.; Eimre, K.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Fasel, R. Chem. Commun. 2019, 55, 13466.
Jessop, P. G. Green Chem. 2011, 13, 1391.
doi: 10.1039/c0gc00797h
Ghasimi, S.; Landfester, K.; Zhang, K. A. ChemCatChem 2016, 8, 694.
doi: 10.1002/cctc.201501102
Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.
doi: 10.1039/B913880N
Ghasimi, S.; Bretschneider, S. A.; Huang, W.; Landfester, K.; Zhang, K. A. Adv. Sci. 2017, 4, 1700101.
doi: 10.1002/advs.201700101
Kishida, K.; Horike, S.; Nakagawa, K.; Kitagawa, S. Chem. Lett. 2012, 41, 425.
doi: 10.1246/cl.2012.425
Anderson Jr., A. G.; Steckler, B. M. J. Am. Chem. Soc. 1959, 81, 4941.
doi: 10.1021/ja01527a046
Barman, S.; Khutia, A.; Koitz, R.; Blacque, O.; Furukawa, H.; Iannuzzi, M.; Yaghi, O. M.; Janiak, C.; Hutter, J.; Berke, H. J. Mater. Chem. A 2014, 2, 18823.
doi: 10.1039/C4TA04393F
Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
doi: 10.1126/science.1067208
Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309, 1350.
doi: 10.1126/science.1113247
Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 14904.
doi: 10.1021/ja0542690
Nakagawa, K.; Tanaka, D.; Horike, S.; Shimomura, S.; Higuchi, M.; Kitagawa, S. Chem. Commun. 2010, 46, 4258.
doi: 10.1039/c0cc00027b
Holovics, T. C.; Robinson, R. E.; Weintrob, E. C.; Toriyama, M.; Lushington, G. H.; Barybin, M. V. J. Am. Chem. Soc. 2006, 128, 2300.
doi: 10.1021/ja053933+
Sun, S.; Zhuang, X.; Wang, L.; Zhang, B.; Ding, J.; Zhang, F.; Chen, Y. J. Mater. Chem. C 2017, 5, 2223.
doi: 10.1039/C6TC05362A
Yang, C.; Schellhammer, K. S.; Ortmann, F.; Sun, S.; Dong, R.; Karakus, M.; Mics, Z.; Lffler, M.; Zhang, F.; Zhuang, X.; Cánovas, E.; Cuniberti, G.; Bonn, M.; Feng, X. Angew. Chem., Int. Ed. 2017, 56, 3920.
doi: 10.1002/anie.201700679
Qiuping Liu , Yongxian Fan , Wenxian Chen , Mengdi Wang , Mei Mei , Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
Wenbing Hu , Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Lijun Huo , Mingcun Wang , Tianyi Zhao , Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
Qingcui Yang , Wen Liu , Li Cao , Chen Tang , Bing Xu , Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084