Citation: Yan Tengfei, Liu Junqiu. Novel Covalent Cross-linked Nanocapsules: Fabrication, Modulation and Functions[J]. Acta Chimica Sinica, ;2020, 78(8): 713-718. doi: 10.6023/A20050164 shu

Novel Covalent Cross-linked Nanocapsules: Fabrication, Modulation and Functions

  • Corresponding author: Liu Junqiu, junqiuliu@jlu.edu.cn
  • Received Date: 12 May 2020
    Available Online: 29 May 2020

    Fund Project: Project supported by Key Research and Development Projects of the Ministry of Science and Technology (Nos. 2018YF09101602, 2018YFA0901600)Key Research and Development Projects of the Ministry of Science and Technology 2018YFA0901600Key Research and Development Projects of the Ministry of Science and Technology 2018YF09101602

Figures(7)

  • Monomolecular layer polymeric nanocapsules can be easily prepared by the covalent self-assembly of the horizontal cross-linking of rigid building blocks and flexible cross-linker under certain conditions. Compared with the traditional noncovalent supramolecular vesicles, this new type of covalently self-assembled polymeric nanocapsules possess many advantages such as stable structure, controllable size, and excellent dispersibility. Therefore, it is of great significance to fabricate new covalent nanocapsules by means of chemical synthesis to realize their structural control and application exploration. Focusing on these problems, we have developed functionalized pillar[5]arene, tetraphenyl ethylene, porphyrin, triazine, phenylboronic anhydride, etc. to serve as basic building blocks, which were polymerized by flexible alkyl linkers to finally obtain the covalently cross-linked polymeric nanocapsules. Through the structural modification and regulation, we found the functionalized polymeric nanocapsules showed potential application in the field of light harvesting, artificial enzyme, antimicrobial and drug delivery. In the future, more application fields of the covalent polymeric nanocapsules are expected to be further explored.
  • 加载中
    1. [1]

      Lee, H.; Kim, W. I.; Youn, W.; Park, T.; Lee, S.; Kim, T. S.; Mano, J. F.; Choi, I. S. Adv. Mater. 2018, 30, 1805091.  doi: 10.1002/adma.201805091

    2. [2]

      Hu, Y.; Yang, Y.; Ning, Y.; Wang, C.; Tong, Z. Colloid. Surface. B 2013, 112, 96.  doi: 10.1016/j.colsurfb.2013.08.002

    3. [3]

      Sugiura, S.; Nakajima, M.; Tong, J.; Nabetani, H.; Seki, M. J. Colloid Interf. Sci. 2000, 227, 95.  doi: 10.1006/jcis.2000.6843

    4. [4]

      Nandiyanto, A. B. D.; Okuyama, K. Adv. Powder Technol. 2011, 22, 1.  doi: 10.1016/j.apt.2010.09.011

    5. [5]

      Li, Z. Q.; Qian, J.; Cao, X. L.; Song, X. W.; Wu, F. P. Acta Chim. Sinica 2010, 68, 181.

    6. [6]

      Zhou, T. Y.; Lin, F.; Li, Z. T.; Zhao, X. Macromolecules 2013, 46, 7745.  doi: 10.1021/ma401570g

    7. [7]

      Kim, E.; Kim, D.; Jung, H.; Lee, J.; Paul, S.; Selvapalam, N.; Yang, Y.; Lim, N.; Park, C. G.; Kim, K. Angew. Chem., Int. Ed. 2010, 49, 4405.  doi: 10.1002/anie.201000818

    8. [8]

      Hota, R.; Baek, K.; Yun, G.; Kim, Y.; Jung, H.; Park, K. M.; Yoon, E.; Joo, T.; Kang, J.; Park, C. G.; Bae, S. M.; Ahn, W. S.; Kim, K. Chem. Sci. 2013, 4, 339.  doi: 10.1039/C2SC21254D

    9. [9]

      Kim, D.; Kim, E.; Kim, J.; Park, K. M.; Baek, K.; Jung, M.; Ko, Y. H.; Sung, W.; Kim, H. S.; Suh, J. H.; Park, C. G.; Na, O. S.; Lee, D. K.; Lee, K. E.; Han, S. S.; Kim, K. Angew. Chem., Int. Ed. 2007, 46, 3471.  doi: 10.1002/anie.200604526

    10. [10]

      Kim, D.; Kim, E.; Lee, J.; Hong, S.; Sung, W.; Lim, N.; Park, C. G.; Kim, K. J. Am. Chem. Soc. 2010, 132, 9908.  doi: 10.1021/ja1039242

    11. [11]

      Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y. H.; Gu, G. H.; Suh, J. H.; Park, C. G.; Sung, B. J.; Kim, K. J. Am. Chem. Soc. 2013, 135, 6523.  doi: 10.1021/ja4002019

    12. [12]

      Lee, J.; Baek, K.; Kim, M.; Yun, G.; Ko, Y. H.; Lee, N. S.; Hwang, I.; Kim, J.; Natarajan, R.; Park, C. G.; Sung, W.; Kim, K. Nat. Chem. 2014, 6, 97.  doi: 10.1038/nchem.1833

    13. [13]

      Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.  doi: 10.1021/ja711260m

    14. [14]

      Yue, S. Y.; Zhou, Y. J.; Yao, Y.; Xue, M. Acta Chim. Sinica 2014, 72, 1053.

    15. [15]

      Fu, S.; An, G.; Sun, H.; Luo, Q.; Hou, C.; Xu, J.; Dong, Z.; Liu, J. Chem. Commun. 2017, 53, 9024.  doi: 10.1039/C7CC04778A

    16. [16]

      Fan, X.; Tian, R.; Wang, T.; Liu, S.; Wang, L.; Xu, J.; Liu, J.; Ma, M.; Wu, Z. Nanoscale 2018, 10, 22155.  doi: 10.1039/C8NR07288D

    17. [17]

      Fan, X.; Tian, R.; Liu, S.; Qiao, S.; Luo, Q.; Yan, T.; Fu, S.; Zhang, X.; Xu, J.; Liu, J. Polym. Chem. 2018, 9, 1160.  doi: 10.1039/C7PY02068F

    18. [18]

      Tian, R.; Fan, X.; Liu, S.; Li, F.; Yang, F.; Li, Y.; Luo, Q.; Hou, C.; Xu, J.; Liu, J. Macromol. Rapid Commun. 2020, 41, 1900586.  doi: 10.1002/marc.201900586

    19. [19]

      van Oijen, A. M.; Ketelaars, M.; Köhler, J.; Aartsma, T. J.; Schmidt, J. Science 1999, 285, 400.  doi: 10.1126/science.285.5426.400

    20. [20]

      Hu, X.; Damjanović, A.; Ritz, T.; Schulten, K. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 5935.  doi: 10.1073/pnas.95.11.5935

    21. [21]

      McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature 1995, 374, 517.  doi: 10.1038/374517a0

    22. [22]

      Li, H.; Liu, Y.; Huang, T.; Qi, M.; Ni, Y.; Wang, J.; Zheng, Y.; Zhou, Y.; Yan, D. Macromol. Rapid Commun. 2017, 38, 1600818.  doi: 10.1002/marc.201600818

    23. [23]

      Suresh, V. M.; George, S. J.; Maji, T. K. Adv. Funct. Mater. 2013, 23, 5585.  doi: 10.1002/adfm.201301178

    24. [24]

      Liu, S.; Jiang, S.; Xu, J.; Huang, Z.; Li, F.; Fan, X.; Luo, Q.; Tian, W.; Liu, J.; Xu, B. Macromol. Rapid Commun. 2019, 40, 1800892.  doi: 10.1002/marc.201800892

    25. [25]

      Nagvenkar, A. P.; Gedanken, A. ACS Appl. Mater. Interfaces 2016, 8, 22301.  doi: 10.1021/acsami.6b05354

    26. [26]

      Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan X. Nat. Nanotech. 2007, 2, 577.  doi: 10.1038/nnano.2007.260

    27. [27]

      Feng, D.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H. C. Angew. Chem., Int. Ed. 2012, 51, 10307.  doi: 10.1002/anie.201204475

    28. [28]

      Crofts, T. S.; Gasparrini, A. J.; Dantas, G. Nat. Rev. Microbiol. 2017, 15, 422.  doi: 10.1038/nrmicro.2017.28

    29. [29]

      Jennings, M. C.; Minbiole, K. P. C.; Wuest, W. M. ACS Infect. Dis. 2015, 1, 288.  doi: 10.1021/acsinfecdis.5b00047

    30. [30]

      Lienkamp, K.; Madkour, A. E.; Musante, A.; Nelson, C. F.; Nüsslein, K.; Tew, G. N. J. Am. Chem. Soc. 2008, 130, 9836.  doi: 10.1021/ja801662y

    31. [31]

      Wang, K. K.; He, J. H. Acta Chim. Sinica 2018, 76, 807.
       

    32. [32]

      Zeng, M.; Xu, J.; Luo, Q.; Hou, C.; Qiao, S.; Fu, S.; Fan, X.; Liu, J. Mat. Sci. Eng. C 2020, 108, 110383.  doi: 10.1016/j.msec.2019.110383

    33. [33]

      Song, J.; Huang, P.; Duan, H.; Chen, X. Acc. Chem. Res. 2015, 48, 2506.  doi: 10.1021/acs.accounts.5b00059

    34. [34]

      Fu, S.; Li, F.; Zang, M.; Zhang, Z.; Ji, Y.; Yu, X.; Luo, Q.; Guan, S.; Xu, J.; Liu, J. J. Mater. Chem. B 2019, 7, 4927.  doi: 10.1039/C9TB01200A

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    8. [8]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    14. [14]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    17. [17]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(11)
  • Abstract views(1419)
  • HTML views(338)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return