Citation: Bai Yunping, Cui Chunming. Selective Hydroboration of Alkynes Enabled by a Silylene Iron(0) Dinitrogen Complex[J]. Acta Chimica Sinica, ;2020, 78(8): 763-766. doi: 10.6023/A20050163 shu

Selective Hydroboration of Alkynes Enabled by a Silylene Iron(0) Dinitrogen Complex

  • Corresponding author: Cui Chunming, cmcui@nankai.edu.cn
  • Received Date: 12 May 2020
    Available Online: 28 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21632006)the National Natural Science Foundation of China 21632006

Figures(2)

  • Silylenes, isoelectronic with carbenes, are a kind of key intermediates in organosilicon chemistry. They possess a lone pair and an empty orbital on the silicon center, and thus could be used as donors and acceptors. Consequently, they could form complexes with various metals to support new structures and chemistry similar to both carbenes and phosphines. Iron complexes played important roles in the development of catalysts because of the inexpensive, nontoxic and sustainable characteristics.Catalytic hydroboration of alkynes presents the most atom-economic and straightforward protocol for the synthesis of vinylboranes which are indispensable intermediates for C—C coupling reactions. For the catalytic hydroboration of alkynes with iron catalysts, Enthaler's group developed the first iron catalytic system for hydroboration of alkynes by using Fe2(CO)9 (A, Chart 1) as the catalyst. Almost at the same time, Thomas's group reported the bis(imino)pyridine derived iron complexes (B) in combination with an activator for catalytic hydroboration of alkynes and alkenes. In 2017, Nishibayashi and co-workers employed an iron(Ⅱ) hydride complex (C) supported by a PNP pincer ligand for catalytic E-selective hydroboration of alkynes. In 2020, Findlater et al. reported the regioselective hydroboration of alkynes and alkenes with iron complexes supported by bis(2, 6-diisopropylaniline)acenaphthene ligands. However, these catalysts still suffered from limited substrate scope or harsh conditions. The development of highly selective catalysts for a wide substrate scope is still desirable. On the basis of our design on silylene ligands for iron chemistry, we are interested in the silylene-iron complexes for catalytic hydroboration reactions. In this paper, hydroborylation of terminal alkynes catalyzed by a neutral silylene-imine iron(0) dinitrogen complex D was studied. The reaction is highly regio- and stereoselective and almost exclusively gave E-hydroboration products. The optimized reaction conditions are as following: To a dried Schlenk tube were added complex D (0.006 g, 0.01 mmol), toluene (1.0 mL), alkyne (0.20 mmol), and catechol borane (0.02 g, 0.20 mmol). After the mixture was stirred at 80 ℃ for 24 h, it was cooled down to room temperature. The solvents were removed under vacuum and the residue was purified by flash chromatography on silica gel to afford the desired products.
  • 加载中
    1. [1]

      (a) Trinquier, G. J. Am. Chem. Soc. 1990, 112, 2130. (b) Apeloig, Y.; Pauncz, R.; Miriam, K.; West, R. Steiner, W.; Chapman, D. Organometallics 2003, 22, 3250. (c) Sasamori, T.; Tokitoh, N. In Encyclopedia of Inorganic Chemistry II, Ed.: King, R. B., John Wiley & Sons: Chichester, U.K., 2005, p. 1698.

    2. [2]

    3. [3]

    4. [4]

      (a) Troadec, T.; Prades, A.; Rodriguez, R.; Mirgalet, R.; Baceiredo, A.; Saffon-Merceron, N.; Branchadell, V.; Kato, T. Inorg. Chem. 2016, 55, 8234. (b) Iimura, T.; Akasaka, N.; Iwamoto, T. Organometallics 2016, 35, 4071. (c) Iimura, T.; Akasaka, N.; Kosai, T.; Iwamoto, T. Dalton Trans. 2017, 46, 8868.

    5. [5]

      (a) Cabeza, J. A.; García-Á lvarez, P.; González-Á lvarez, L. Chem. Commun. 2017, 53, 10275. (b) Ren, H.; Zhou, Y.-P.; Bai, Y.; Cui, C.; Driess, M. Chem. Eur. J. 2017, 23, 5663. (c) Brück, A.; Gallego, D.; Wang, W.; Irran, E.; Driess, M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 11478. (d) Zhou, Y.-P.; Raoufmoghaddam, S.; Szilvási, T.; Driess, M. Angew. Chem. Int. Ed. 2016, 55, 12868. (e) Wang, Y.; Kostenko, A.; Yao, S.; Driess, M. J. Am. Chem. Soc. 2017, 139, 13499.

    6. [6]

      (a) Fürstner, A.; Krause, H.; Lehmann, C. W. Chem. Commun. 2001, 2372. (b) Khoo, S.; Cao, J.; Yang, M.-C.; Shan, Y.-L.; Su, M.-D.; So, C.-W. Chem. Eur. J. 2018, 24, 14329. (c) Zhang, M.; Liu, X.; Shi, C.; Ren, C.; Ding, Y.; Roesky, H. W. Z. Anorg. Allg. Chem. 2008, 634, 1755. (d) Gallego, D.; Brgck, A.; Irran, E.; Meier, F.; Kaupp, M.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 15617. (e) Tan, G.; Enthaler, S.; Inoue, S.; Blom, B.; Driess, M. Angew. Chem. Int. Ed. 2015, 54, 2214. (f) Qi, X.; Sun, H.; Li, X.; Fuhr, O.; Fenske, D. Dalton Trans. 2018, 47, 2581. (g) Mo, Z.; Kostenko, A.; Zhou, Y.-P.; Yao, S.; Driess, M. Chem. Eur. J. 2018, 24, 14608. (h) Schmidt, M.; Blom, B.; Szilvási, T.; Schomä cker, R.; Driess, M. Eur. J. Inorg. Chem. 2017, 1284. (i) Someya, C. I.; Haberberger, M.; Wang, W.; Enthaler, S.; Inoue, S. Chem. Lett. 2013, 42, 286.

    7. [7]

      (a) Bracher, F.; Litz, T.; J. Prakt. Chem./Chem.-Ztg. 1996, 338, 386. (b) Brown, H. C.; Chen, J. J. Org. Chem. 1981, 46, 3978. (c) Brown, H. C.; Rao, B. S. J. Am. Chem. Soc. 1959, 81, 6423. (d) Crockett, M. P.; Tyrol, C. C.; Wong, A. S.; Li, B.; Byers, J. A. Org. Lett. 2018, 20, 5233. (e) Hartwig, J. F. Acc. Chem. Res. 2011, 45, 864. (e) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. (f) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.

    8. [8]

      Haberberger, M.; Enthaler, S. Chem. Asian J. 2013, 8, 50.  doi: 10.1002/asia.201200931

    9. [9]

      Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230.  doi: 10.1039/c3cc46727a

    10. [10]

      Nakajima, K.; Kato, T.; Nishibayashi, Y. Org. Lett. 2017, 19, 4323.  doi: 10.1021/acs.orglett.7b01995

    11. [11]

      Singh, A.; Shafiei-Haghighi, S.; Smith, C. R.; Unruh, D. K.; Findlater, M. Asian J. Org. Chem. 2020, 9, 416.  doi: 10.1002/ajoc.201900615

    12. [12]

      Bai, Y.; Zhang, J.; Cui, C. Chem. Commun. 2018, 54, 8124.  doi: 10.1039/C8CC03734E

    13. [13]

      (a) Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Nat. Chem. 2017, 9, 595. (b) Gorgas, N.; Alves, L. G.; Stöger, B.; Martins, A. M.; Veiros, L. F.; Kirchner, K. J. Am. Chem. Soc. 2017, 139, 8130.

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    15. [15]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(8)
  • Abstract views(1495)
  • HTML views(473)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return