Citation: Jiang Jinhui, Zhu Yunqing, Du Jianzhong. Challenges and Perspective on Ring-Opening Polymerization-Induced Self-Assembly[J]. Acta Chimica Sinica, ;2020, 78(8): 719-724. doi: 10.6023/A20050162 shu

Challenges and Perspective on Ring-Opening Polymerization-Induced Self-Assembly

  • Corresponding author: Zhu Yunqing, 1019zhuyq@tongji.edu.cn Du Jianzhong, jzdu@tongji.edu.cn
  • Received Date: 11 May 2020
    Available Online: 19 June 2020

    Fund Project: the National Science Fund for Distinguished Young Scholars 21925505the National Natural Science Foundation of China 21674081the National Natural Science Foundation of China 51903190Shanghai Pujiang Program 19PJ1409600Project supported by the National Science Fund for Distinguished Young Scholars (No. 21925505), the National Natural Science Foundation of China (Nos. 21674081, 51903190) and Shanghai Pujiang Program (No. 19PJ1409600)

Figures(5)

  • Polymerization-induced self-assembly (PISA) is one of the most cutting-edge strategies towards the preparation of nanoparticles with a range of morphologies (spheres, worms, vesicles, etc.) as it combines polymerization and self-assembly and thus can afford high solid contents in various media. Additionally, nanoparticle morphology can be accurately targeted by adjusting the degree of polymerization of the soluble stabilizer block and the insoluble core-forming block, as well as solid contents in PISA formula. Unfortunately, this highly efficient approach is limited to specific polymerization methods, and hence specific monomer types. Currently, PISA based on reversible addition-fragmentation chain-transfer polymerization (RAFT) has been well-established for the in situ preparation of a range of nanoparticle morphologies. This method is relatively mature especially in the mechanism exploration, morphological control, and characterization, which has important impact to other fields of polymer chemistry. However, methacrylates, acrylates, and styrene monomers are often essential for reversible addition-fragmentation chain-transfer polymerization-induced self-assembly (RAFT-PISA), leading to the carbon-carbon backbone, which normally produces nonbiodegradable structures. These drawbacks are detrimental in terms of biomedical applications. Fortunately, new PISA strategies based on ring-opening polymerizations, including ring-opening metathesis polymerization-induced self-assembly (ROMPISA), ring-opening polymerization of N-carboxy- anhydride-induced self-assembly (NCA-PISA) and radical ring-opening polymerization-induced self-assembly (rROPISA), have been developed to overcome these problems. ROMPISA has proven to be an efficient approach for fabricating multifunctional nanoparticles due to its great tolerance for many functional groups. Biodegradable nanoparticles, including spheres and vesicles, have been successfully prepared by rROPISA and NCA-PISA. Therefore, ring-opening PISA (ROPISA) provides not only new polymerization methods but also new strategies for fabricating biodegradable nanoparticles with a range of monomer species. In this perspective, we briefly summarize the current progress and analyze the challenges of ROPISA. Finally, we provide a perspective for the further development of ROPISA addressed on the mechanism, monomers and applications, which provides an insight into ROPISA as well as some suggestions and directions for its future research.
  • 加载中
    1. [1]

      Kim, J. K.; Yang, S. Y.; Lee, Y.; Kim, Y. Prog. Polym. Sci. 2010, 35, 1325.  doi: 10.1016/j.progpolymsci.2010.06.002

    2. [2]

      Cai, C. H.; Wang, L. Q.; Lin, J. P. Chem. Commun. 2011, 47, 11189.  doi: 10.1039/c1cc12683k

    3. [3]

      Guan, X. L.; Wang, L.; Li, Z. F.; Liu, M. N.; Wang, K. L.; Lin, B.; Yang, X. Q.; Lai, S. J.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 1036 (in Chinese).
       

    4. [4]

      Zhu, Y. Q.; Yang, B.; Chen, S.; Du, J. Z. Prog. Polym. Sci. 2017, 64, 1.  doi: 10.1016/j.progpolymsci.2015.05.001

    5. [5]

      Ma, G. H.; Yue, H. Chin. J. Chem. 2020, 38, 911.  doi: 10.1002/cjoc.202000135

    6. [6]

      Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969.  doi: 10.1039/c2cs35115c

    7. [7]

      Canning, S. L.; Smith, G. N.; Armes, S. P. Macromolecules 2016, 49, 1985.  doi: 10.1021/acs.macromol.5b02602

    8. [8]

      Chen, S. L.; Shi, P. F.; Zhang, W. Q. Chin. J. Polym. Sci. 2017, 35, 455.  doi: 10.1007/s10118-017-1907-8

    9. [9]

      Cheng, G.; Pérez-Mercader, J. Macromol. Rapid Commun. 2019, 40, 1800513.  doi: 10.1002/marc.201800513

    10. [10]

      Zhao, Q. Q.; Liu, Q. Z.; Li, C.; Cao, L.; Ma, L.; Wang, X. Y.; Cai, Y. L. Chem. Commun. 2020, 56, 4954.  doi: 10.1039/D0CC00427H

    11. [11]

      Penfold, N. J. W.; Yeow, J.; Boyer, C.; Armes, S. P. ACS Macro Lett. 2019, 8, 1029.  doi: 10.1021/acsmacrolett.9b00464

    12. [12]

      Liu, C.; Hong, C. Y.; Pan, C. Y. Polym. Chem. 2020, 11, 3673.  doi: 10.1039/D0PY00455C

    13. [13]

      D'Agosto, F.; Rieger, J.; Lansalot, M. Angew. Chem., Int. Ed. 2019, 59, 2.

    14. [14]

      Tan, J. B.; Xu, Q.; Li, X. L.; He, J.; Zhang, Y. X.; Dai, X. C.; Yu, L. L.; Zeng, R. M.; Zhang, L. Macromol. Rapid Commun. 2018, 39, 1700871.  doi: 10.1002/marc.201700871

    15. [15]

      Zheng, J. W.; Wang, X.; An, Z. S. Acta Polym. Sin. 2019, 50, 1167 (in Chinese).

    16. [16]

      Mane, S. R. New J. Chem. 2020, 44, 6690.  doi: 10.1039/C9NJ05638F

    17. [17]

      Zhu, Y.; Ye, W. L.; Liu, Z. F.; Deng, W.; Liu, M. N. Acta Polym. Sin. 2019, 50, 44 (in Chinese).

    18. [18]

      Slugovc, C. Macromol. Rapid Commun. 2004, 25, 1283.  doi: 10.1002/marc.200400150

    19. [19]

      Bielawski, C. W.; Grubbs, R. H. Prog. Polym. Sci. 2007, 32, 1.  doi: 10.1016/j.progpolymsci.2006.08.006

    20. [20]

      Frenzel, U.; Nuyken, O. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2895.  doi: 10.1002/pola.10324

    21. [21]

      Bielawski, C. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 2000, 39, 2903.  doi: 10.1002/1521-3773(20000818)39:16<2903::AID-ANIE2903>3.0.CO;2-Q

    22. [22]

      Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.  doi: 10.1021/cr9002424

    23. [23]

      Claverie, J. P.; Viala, S.; Maurel, V.; Novat, C. Macromolecules 2001, 34, 382.  doi: 10.1021/ma001570m

    24. [24]

      Chemtob, A.; Héroguez, V.; Gnanou, Y. Macromolecules 2002, 35, 9262.  doi: 10.1021/ma020871o

    25. [25]

      Le, D.; Montembault, V.; Pascual, S.; Collette, F.; Héroguez, V.; Fontaine, L. Polym. Chem. 2013, 4, 2168.  doi: 10.1039/c3py21103g

    26. [26]

      Hilf, S.; Kilbinger, A. F. M. Nat. Chem. 2009, 1, 537.  doi: 10.1038/nchem.347

    27. [27]

      Le, D.; Dilger, M.; Pertici, V.; Diabaté, S.; Gigmes, D.; Weiss, C.; Delaittre, G. Angew. Chem., Int. Ed. 2019, 58, 4725.  doi: 10.1002/anie.201813434

    28. [28]

      Zhang, L. Y.; Song, C.; Yu, J. H.; Yang, D.; Xie, M. R. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5231.  doi: 10.1002/pola.24323

    29. [29]

      Liu, J. W.; Liao, Y.; He, X. H.; Yu, J. H.; Ding, L.; Xie, M. R. Macromol. Chem. Phys. 2011, 212, 55.  doi: 10.1002/macp.201000416

    30. [30]

      Yoon, K.-Y.; Lee, I.-H.; Kim, K. O.; Jang, J.; Lee, E.; Choi, T.-L. J. Am. Chem. Soc. 2012, 134, 14291.  doi: 10.1021/ja305150c

    31. [31]

      Wright, D. B.; Touve, M. A.; Adamiak, L.; Gianneschi, N. C. ACS Macro Lett. 2017, 6, 925.  doi: 10.1021/acsmacrolett.7b00408

    32. [32]

      Foster, J. C.; Varlas, S.; Blackman, L. D.; Arkinstall, L. A.; O'Reilly, R. K. Angew. Chem., Int. Ed. 2018, 57, 10672.  doi: 10.1002/anie.201806719

    33. [33]

      Varlas, S.; Foster, J. C.; Arkinstall, L. A.; Jones, J. R.; Keogh, R.; Mathers, R. T.; O'Reilly, R. K. ACS Macro Lett. 2019, 8, 466.  doi: 10.1021/acsmacrolett.9b00117

    34. [34]

      Wright, D. B.; Touve, M. A.; Thompson, M. P.; Gianneschi, N. C. ACS Macro Lett. 2018, 7, 401.  doi: 10.1021/acsmacrolett.8b00091

    35. [35]

      Sha, Y.; Rahman, M. A.; Zhu, T. Y.; Cha, Y. J.; McAlister, C. W.; Tang, C. B. Chem. Sci. 2019, 10, 9782.  doi: 10.1039/C9SC03056E

    36. [36]

      Torres-Rocha, O. L.; Wu, X. W.; Zhu, C. Y.; Crudden, C. M.; Cunningham, M. F. Macromol. Rapid Commun. 2019, 40, 1800326.  doi: 10.1002/marc.201800326

    37. [37]

      Wright, D. B.; Proetto, M. T.; Touve, M. A.; Gianneschi, N. C. Polym. Chem. 2019, 10, 2996.  doi: 10.1039/C8PY01539B

    38. [38]

      Wright, D. B.; Thompson, M. P.; Touve, M. A.; Carlini, A. S.; Gianneschi, N. C. Macromol. Rapid Commun. 2019, 40, 1800467.  doi: 10.1002/marc.201800467

    39. [39]

      Deming, T. J. Prog. Polym. Sci. 2007, 32, 858.  doi: 10.1016/j.progpolymsci.2007.05.010

    40. [40]

      Shen, Y.; Fu, X. H.; Fu, W. X.; Li, Z. B. Chem. Soc. Rev. 2015, 44, 612.  doi: 10.1039/C4CS00271G

    41. [41]

      Sun, H.; Hong, Y. X.; Xi, Y. J.; Zou, Y. J.; Gao, J. Y.; Du, J. Z. Biomacromolecules 2018, 19, 1701.  doi: 10.1021/acs.biomac.8b00208

    42. [42]

      Xu, Y.; Zhao, Y.; Zhang, Y. J.; Cui, Z. F.; Wang, L. H.; Fan, C. H.; Gao, J. M.; Sun, Y. H. Acta Chim. Sinica 2018, 76, 393 (in Chinese).
       

    43. [43]

      Lv, M. X.; Mai, W. P.; Lu, Q.; Duan, B. C.; Zhao, Y. F. Chin. J. Org. Chem. 2018, 38, 148 (in Chinese).

    44. [44]

      Deming, T. J. Nature 1997, 390, 386.  doi: 10.1038/37084

    45. [45]

      González-Henríquez, C. M.; Sarabia-Vallejos, M. A.; Rodríguez- Hernández, J. Polymers 2017, 9, 551.  doi: 10.3390/polym9110551

    46. [46]

      Jiang, J. H.; Zhang, X. Y.; Fan, Z.; Du, J. Z. ACS Macro Lett. 2019, 8, 1216.  doi: 10.1021/acsmacrolett.9b00606

    47. [47]

      Grazon, C.; Salas-Ambrosio, P.; Ibarboure, E.; Buol, A.; Garanger, E.; Grinstaff, M. W.; Lecommandoux, S.; Bonduelle, C. Angew. Chem., Int. Ed. 2020, 59, 622.  doi: 10.1002/anie.201912028

    48. [48]

      Song, T.; Xi, Y. J.; Du, J. Z. Acta Polym. Sin. 2018, 119 (in Chinese).

    49. [49]

      Zou, Y. J.; He, S. S.; Du, J. Z. Chin. J. Polym. Sci. 2018, 36, 1239.  doi: 10.1007/s10118-018-2156-1

    50. [50]

      Agarwal, S. Polym. Chem. 2010, 1, 953.  doi: 10.1039/c0py00040j

    51. [51]

      Nuyken, O.; Pask, D. S. Polymers 2013, 5, 361.  doi: 10.3390/polym5020361

    52. [52]

      Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Chem. Rev. 2017, 117, 1319.  doi: 10.1021/acs.chemrev.6b00319

    53. [53]

      Guégain, E.; Zhu, C.; Giovanardi, E.; Nicolas, J. Macromolecules 2019, 52, 3612.  doi: 10.1021/acs.macromol.9b00161

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    10. [10]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    11. [11]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

Metrics
  • PDF Downloads(34)
  • Abstract views(2865)
  • HTML views(841)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return