Citation: Wang Peipei, Liang Tao, Zuo Miaomiao, Li Zhen, Liu Zhihong. A Ratiometric Upconversion Nanoprobe for Detection of HNO Based on Luminescence Resonance Energy Transfer[J]. Acta Chimica Sinica, ;2020, 78(8): 797-804. doi: 10.6023/A20050146 shu

A Ratiometric Upconversion Nanoprobe for Detection of HNO Based on Luminescence Resonance Energy Transfer

  • Corresponding author: Li Zhen, zhenli@hubu.edu.cn Liu Zhihong, zhhliu@whu.edu.cn
  • Received Date: 6 May 2020
    Available Online: 3 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21625503, 21807028)the National Natural Science Foundation of China 21625503the National Natural Science Foundation of China 21807028

Figures(7)

  • Nitroxyl (HNO), produced by nitric oxide (NO) with one-electron reduction and protonation, has recently received substantial interest due to its important roles in various biological functions and pharmacological activities. Research indicates that HNO also has many potential pharmacological applications for different diseases. Therefore, the development of a reliable method for HNO assay in biosystems is highly desired. Ratiometric fluorescent probes show significant advantages over traditional "turn-on" ones, because simultaneous measurement of two emission signals can provide a built-in correction and thus minimize the inaccurate fluorescence signal readouts. As far as we know, there is no ratiometric fluorescent probe for HNO detection based on upconversion nanoparticles (UCNPs). Herein, a ratiometric nanoprobe for HNO assay was constructed based on the luminescence resonance energy transfer (LRET) principle by using UCNPs with a core-shell structure (NaYbF4:30%Gd@NaYF4:2%Yb:1%Tm) as the energy donor and an organic dye Fl-TP as the potential energy acceptor. The oleate-coated UCNPs (OA-UCNPs) and Fl-TP were assembled through hydrophobic interaction to construct the upconversion nanoprobe (termed as Fl-TP-UCNPs). Because of the ring-closed form, Fl-TP displayed weak absorption and was non-fluorescent, which blocked the LRET process. After reaction with HNO, the triphenylphosphine moiety left and released Fl-HNO with the fluorescent ring-open form. Fl-HNO showed strong absorption in the range of 400~500 nm, which completely overlapped with the blue luminescence of UCNPs and triggered the LRET process between UCNPs and Fl-HNO. Thus, the luminescence from UCNPs around 480 nm decreased and the emission from Fl-HNO around 525 nm increased with a [HNO]-dependent manner. The ratiometric luminescence intensity F525 nm/F480 nm showed a good linear relationship (R2=0.9914) to the logarithm of AS (Angeli's salt, a generally used HNO donor) concentration in the range of 3~100 μmol·L-1 and the limit of detection was 23.4 nmol·L-1. The excellent sensitivity, stability, selectivity and low cytotoxicity endow Fl-TP-UCNPs with the superior capability for HNO assay in vitro and in vivo. We found that Fl-TP-UCNPs probe is appropriate for monitoring HNO in living cells as well as imaging HNO in liver tissues. This probe may be a powerful tool for HNO assay in various physiological processes.
  • 加载中
    1. [1]

      Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783.  doi: 10.1039/c1cs15037e

    2. [2]

      Chen, X.; Wang, F.; Hyun, J. Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2016, 45, 2976.  doi: 10.1039/C6CS00192K

    3. [3]

      Fukuto, J. M; Switzer, C. H.; Miranda, K. M.; Wink, D. A. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 335.  doi: 10.1146/annurev.pharmtox.45.120403.095959

    4. [4]

      Fukuto, J. M; Carrington, S. J. Antioxid. Redox. Signaling 2011, 14, 1649.  doi: 10.1089/ars.2010.3855

    5. [5]

      Wong, P. S.-Y.; Hyun, J.; Fukuto, J. M.; Shirota, F. N.; Demaster, E. G.; Shoeman, D. W.; Nagasawa, H. T. Biochemistry 1998, 37, 5362.  doi: 10.1021/bi973153g

    6. [6]

      Jackson, M. I.; Fields, H. F.; Lujan, T. S.; Cantrell, M. M.; Lin, J.; Fukuto, J. M. Arch. Biochem. Biophys. 2013, 538, 120.  doi: 10.1016/j.abb.2013.08.008

    7. [7]

      Johnson, G. M.; Chozinski, T. J.; Gallagher, E. S.; Aspinwall, C. A.; Miranda, K. M. Free Radical Biol. Med. 2014, 76, 299.  doi: 10.1016/j.freeradbiomed.2014.07.022

    8. [8]

      Nakagawa, H. Nitric Oxide. 2011, 25, 195.  doi: 10.1016/j.niox.2010.12.004

    9. [9]

      Fukuto, J. M.; Cisneros, C. J.; Kinkade, R. L. Inorg. Biochem. 2013, 118, 201.  doi: 10.1016/j.jinorgbio.2012.08.027

    10. [10]

      Switzer, C. H.; Flores-Santana, W.; Mancardi, D.; Donzelli, S.; Basudhar, D.; Ridnour, L. A.; Miranda, K. M.; Fukuto, J. M.; Paolocci, N.; Wink, D. A. Biochim. Biophys. Acta Bioenerg. 2009, 1787, 835.  doi: 10.1016/j.bbabio.2009.04.015

    11. [11]

      Shafirovich, V.; Lymar, S. V. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 7340.  doi: 10.1073/pnas.112202099

    12. [12]

      Li, X.; Gao, X.; Shi, W.; Ma, H. Chem. Rev. 2014, 114, 590.  doi: 10.1021/cr300508p

    13. [13]

      Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem. Res. 2013, 46, 1462.  doi: 10.1021/ar300273v

    14. [14]

      Zhang, H.; Liu, R.; Tan, Y.; Xie, W. H.; Lei, H.; Cheung, H. Y.; Sun, H. ACS Appl. Mater. Interfaces 2015, 7, 5438.  doi: 10.1021/am508987v

    15. [15]

      Rosenthal, J.; Lippard, S. J. J. Am. Chem. Soc. 2010, 132, 5536.  doi: 10.1021/ja909148v

    16. [16]

      Wrobel, A. T.; Johnstone, T. C.; Liang, A. D.; Lippard, S. J.; Rivera-Fuentes, P. J. Am. Chem. Soc. 2014, 136, 4697.  doi: 10.1021/ja500315x

    17. [17]

      Li, H.; Yao, Q.; Xu, F.; Xu, N.; Ma, X.; Fan, J.; Long, S.; Du, J.; Wang, J.; Peng, X. Anal. Chem. 2018, 90, 4641.  doi: 10.1021/acs.analchem.7b05172

    18. [18]

      Ali, F.; Sreedharan, S.; Ashoka, A. H.; Saeed, H. K.; Smythe, C. G. W.; Thomas, J. A.; Das, A. Anal. Chem. 2017, 89, 12087.  doi: 10.1021/acs.analchem.7b02567

    19. [19]

      Jiao, C.-P.; Liu, Y.-Y.; Lu, W.-J.; Zhang, P.-P.; Wang, Y.-F. Chin. J. Org. Chem. 2019, 39, 591 (in Chinese).
       

    20. [20]

      Wang, X.-F.; Wei, C.; Li, X.-Y.; Zheng, X.-Y.; Geng, X.-W.; Zhang, P.-Z.; Li, X.-L. Chin. J. Org. Chem. 2019, 39, 469. (in Chinese).
       

    21. [21]

      Cline, M. R.; Toscano, J. P. J. Phys. Org. Chem. 2011, 24, 993.  doi: 10.1002/poc.1871

    22. [22]

      Zhou, Y.; Liu, K.; Li, J.-Y.; Fang, Y.; Zhao, T.-C.; Yao, C. Org. Lett. 2011, 13, 1290.  doi: 10.1021/ol103077q

    23. [23]

      Mcquade, L. E.; Lippard, S. J. Curr. Opin. Chem. Biol. 2010, 14, 43.  doi: 10.1016/j.cbpa.2009.10.004

    24. [24]

      Zheng, W.; Huang, P.; Tu, D.; Ma, E.; Zhu, H.; Chen, X. Chem. Soc. Rev. 2015, 44, 1379.  doi: 10.1039/C4CS00178H

    25. [25]

      Yang, D.; Ma, P.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Chem. Soc. Rev. 2015, 44, 1416.  doi: 10.1039/C4CS00155A

    26. [26]

      Chen, G.; Qiu, H.; Prasad, P.; Chen, X. Chem. Rev. 2014, 114, 5161.  doi: 10.1021/cr400425h

    27. [27]

      Zhu, X.; Feng, W.; Chang, J.; Tan, Y.-W.; Li, J.; Chen, M.; Sun, Y.; Li, F. Nat. Commun. 2016, 7, 10437.  doi: 10.1038/ncomms10437

    28. [28]

      Zhou, L.; Wang, R.; Yao, C.; Li, X.; Wang, C.; Zhang, X.; Xu, C.; Zeng, A.; Zhao, D.; Zhang, F. Nat. Commun. 2015, 6, 7350.  doi: 10.1038/ncomms8350

    29. [29]

      Gu, B.; Zhang, Q. Adv. Sci. 2018, 5, 1700609.  doi: 10.1002/advs.201700609

    30. [30]

      Su, Q.; Feng, W.; Yang, D.; Li, F. Acc. Chem. Res. 2017, 50, 32.  doi: 10.1021/acs.accounts.6b00382

    31. [31]

      Wang, S.; Liu, L.; Fan, Y.; El-Toni, A. M.; Alhoshan, M. S.; Li, D.; Zhang, F. Nano Lett. 2019, 19, 2418.  doi: 10.1021/acs.nanolett.8b05148

    32. [32]

      Fan, Y.; Liu, L.; Zhang, F. Nano Today 2019, 25, 68.  doi: 10.1016/j.nantod.2019.02.009

    33. [33]

      Fan, Y.; Zhang, F. Adv. Optical. Mater. 2019, 7, 1801417.  doi: 10.1002/adom.201801417

    34. [34]

      Li, X.; Guo, Z.; Zhao, T.; Lu, Y.; Zhou, L.; Zhao, D.; Zhang, F. Angew. Chem., Int. Ed. 2016, 55, 2464.  doi: 10.1002/anie.201510609

    35. [35]

      Liu, L.; Wang, S.; Zhao, B.; Pei, P.; Fan, Y.; Li, X.; Zhang, F. Angew. Chem., Int. Ed. 2018, 57, 7518.  doi: 10.1002/anie.201802889

    36. [36]

      Lin, R.-Y.; Chen, Y.; Tao, G.-Y.; Pei, X.-J.; Liu, F.; Li, N. Acta Chim. Sinica 2017, 75, 1103 (in Chinese).
       

    37. [37]

      Chen, K.; Han, B.-C.; Ji, S.-X.; Sun, J.; Gao, Z.-Z.; Hou, X.-F. Acta Chim. Sinica 2019, 77, 365 (in Chinese).
       

    38. [38]

      Ma, C.; Xu, X.; Wang, F.; Zhou, Z.; Liu, D.; Zhao, J.; Guan, M.; Lang, C. I.; Jin, D. Nano Lett. 2017, 17, 2858.  doi: 10.1021/acs.nanolett.6b05331

    39. [39]

      Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Nat. Commun. 2018, 9, 2415.  doi: 10.1038/s41467-018-04813-5

    40. [40]

      Siefe, C.; Mehlenbacher, R. D.; Peng, C. S.; Zhang, Y.; Fischer, S.; Lay, A.; McLellan, C. A.; Alivisatos, A. P.; Chu, S.; Dionne, J. A. J. Am. Chem. Soc. 2019, 141, 16997.  doi: 10.1021/jacs.9b09571

    41. [41]

      Wang, F.; Han, Y.; Lim, C. S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Nature 2010, 463, 1061.  doi: 10.1038/nature08777

    42. [42]

      Han, S.; Deng, R.; Xie, X.; Liu, X. Angew. Chem., Int. Ed. 2014, 53, 11702.  doi: 10.1002/anie.201403408

    43. [43]

      Zhong, Y.; Tian, G.; Gu, Z.; Yang, Y.; Gu, L.; Zhao, Y.; Ma, Y.; Yao, J. Adv. Mater. 2014, 26, 2831.  doi: 10.1002/adma.201304903

    44. [44]

      Min, Q.; Zhao, L.; Qi, Y.; Lei, J.; Chen, W.; Xu, X.; Zhou, D.; Qiu, J.; Yu, X. Nanoscale 2018, 10, 19031.  doi: 10.1039/C8NR05021J

    45. [45]

      Maeda, H.; Fukuyasu, Y.; Yoshida, S.; Fukuda, M.; Saeki, K.; Matsuno, H.; Yamauchi, Y.; Yoshida, K.; Hirata, K.; Miyamoto, K.; Angew. Chem., Int. Ed. 2004, 43, 2389.  doi: 10.1002/anie.200452381

    46. [46]

      Cen, Y.; Wu, Y.-M.; Kong, X.-J.; Wu, S.; Yu, R.-Q.; Chu, X. Anal. Chem. 2014, 86, 7119.  doi: 10.1021/ac5016694

    47. [47]

      Tao, L.; Li, Z.; Wang, P.; Zhao, F.; Liu, Z. J. Am. Chem. Soc. 2018, 140, 14696.  doi: 10.1021/jacs.8b07329

    48. [48]

      Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X.; Chen, C.; Zhao, Y. Small 2011, 7, 1322.  doi: 10.1002/smll.201100001

    49. [49]

      Yang, M.; Fan, J.; Sun, W.; Du, J.; Long, S.; Shao, K.; Peng, X. Chem. Commun. 2019, 55, 8583.  doi: 10.1039/C9CC04060A

    50. [50]

      Suarez, S. A.; Muñoz, M.; Alvarez, L.; Venâncio, M. F.; Rocha, W. R.; Bikiel, D. E.; Marti, M. A.; Doctorovich, F. J. Am. Chem. Soc. 2017, 139, 14483.  doi: 10.1021/jacs.7b06968

    51. [51]

      Jing, X.; Yu, F.; Chen, L. Chem. Commun. 2014, 50, 14253.  doi: 10.1039/C4CC07561G

    52. [52]

      Li, J.-B.; Wang, Q.; Liu, H.-W.; Yin, X.; Hu, X.-X.; Yuan, L.; Zhang, X.-B. Chem. Commun. 2019, 55, 1758.  doi: 10.1039/C9CC00211A

    53. [53]

      Blanco, E.; Shen, H.; Ferrari, M. Nat. Biotechnol. 2015, 33, 941.  doi: 10.1038/nbt.3330

    54. [54]

      Liu, Y.; Chen, M.; Cao, T.; Sun, Y.; Li, C.; Liu, Q.; Yang, T.; Yao, L.; Feng, W.; Li, F. J. Am. Chem. Soc. 2013, 135, 9869.  doi: 10.1021/ja403798m

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    4. [4]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    9. [9]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    10. [10]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    11. [11]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

Metrics
  • PDF Downloads(13)
  • Abstract views(1119)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return