Citation: Zhu Qingqing, Song Xiaojun, Deng Zhaoxiang. Tunable Charge Transfer Plasmon at Gold/Copper Heterointerface[J]. Acta Chimica Sinica, ;2020, 78(7): 675-679. doi: 10.6023/A20050145 shu

Tunable Charge Transfer Plasmon at Gold/Copper Heterointerface

  • Corresponding author: Deng Zhaoxiang, zhxdeng@ustc.edu.cn
  • Received Date: 19 May 2020
    Available Online: 29 June 2020

    Fund Project: the National Natural Science Foundation of China 21425521Project supported by the National Key Research and Development Program of China (Nos. 2016YFA0201300, 2018YFA0702001) and the National Natural Science Foundation of China (Nos. 21425521, 21972130, 21521001)the National Natural Science Foundation of China 21521001the National Key Research and Development Program of China 2016YFA0201300the National Natural Science Foundation of China 21972130the National Key Research and Development Program of China 2018YFA0702001

Figures(4)

  • Metal nanostructures with localized surface plasmon resonance (LSPR) have attracted great attention in catalysis, sensing, nanooptics, and nanomedicine. Charge transfer plasmon (CTP) is a LSPR mode that strongly depends on a conductive junction between metallic nanounits. Benefitting from the charge transfer junction, CTP provides a facile way to generate widely tunable LSPR with highly localized/enhanced light magnetic field and photothermal effect. The limited availability of highly tunable CTP structures and their fabrication techniques hinders a further pursuit of their functions and applications. In response to this situation, the present work aims at developing a simple while highly efficient synthetic route to width-adjustable Au/Cu heterojunctions capable of evoking tunable CTP behaviors. The strategy relies on a non-specific surface adsorption of low-cost, naturally occurred fish sperm DNA on a gold nanoseed to control heterogeneous copper nucleation. Such a process offers a chance to tailor the contact area between the gold and copper nano-domains in the bimetallic structure. Highly tunable CTP resonance from visible to near-infrared region is then realizable on the basis of this method. Experimental and calculated extinction spectra consistently reveal three key variables for the CTP structure, including the width of conductive junction and the sizes of gold and copper particles. These parameters are associated with DNA coverage, copper precursor concentration, and the synthetic conditions for gold nanoparticles, which allow for a CTP tuning from visible to near infrared wavelengths. By fully exploiting these highly controllable parameters, the maximally achievable CTP wavelength readily enters a near infrared Ⅱ domain. The resulting CTP signals have a red-shift of up to 750 nm relative to the 530~570 nm LSPR peaks of individual gold and copper nanoparticles, corresponding to a very narrow Au/Cu conductive contact of 11~13 nm in width. The role of nonspecific DNA adsorption in the above process proves unique (currently irreplaceable) compared to other molecular adsorbates. The easily tunable Au/Cu heterointerface paves a way to integrated CTP and catalytic/sensing functions in future research.
  • 加载中
    1. [1]

      Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685.  doi: 10.1002/adma.200400271

    2. [2]

      Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913.  doi: 10.1021/cr200061k

    3. [3]

      Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Nano Lett. 2004, 4, 899.  doi: 10.1021/nl049681c

    4. [4]

      Romero, I.; Aizpurua, J.; Bryant, G. W.; de Abajo, F. J. G. Opt. Express 2006, 14, 9988.  doi: 10.1364/OE.14.009988

    5. [5]

      Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J. R.; Lamprecht, B.; Aussenegg, F. R. Opt. Commun. 2003, 220, 137.  doi: 10.1016/S0030-4018(03)01357-9

    6. [6]

      Savage, K. J.; Hawkeye, M. M.; Esteban, R.; Borisov, A. G.; Aizpurua, J.; Baumberg, J. J. Nature 2012, 491, 574.  doi: 10.1038/nature11653

    7. [7]

      Esteban, R.; Borisov, A. G.; Nordlander, P.; Aizpurua, J. Nat. Commun. 2012, 3, 825.  doi: 10.1038/ncomms1806

    8. [8]

      Wen, F. F.; Zhang, Y.; Gottheim, S.; King, N. S.; Zhang, Y.; Nordlander, P.; Halas, N. J. ACS Nano 2015, 9, 6428.  doi: 10.1021/acsnano.5b02087

    9. [9]

      Atay, T.; Song, J. H.; Nurmikko, A. V. Nano Lett. 2004, 4, 1627.  doi: 10.1021/nl049215n

    10. [10]

      Pérez-González, O.; Zabala, N.; Borisov, A. G.; Halas, N. J.; Nordlander, P.; Aizpurua, J. Nano Lett. 2010, 10, 3090.  doi: 10.1021/nl1017173

    11. [11]

      Grosjean, T.; Mivelle, M.; Baida, F. I.; Burr, G. W.; Fischer, U. C. Nano Lett. 2011, 11, 1009.  doi: 10.1021/nl103817f

    12. [12]

      Lim, B. K.; Kobayashi, H.; Yu, T.; Wang, J. G.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y. N. J. Am. Chem. Soc. 2010, 132, 2506.  doi: 10.1021/ja909787h

    13. [13]

      Tao, Z. X.; Wu, Z. S.; Yuan, X. L.; Wu, Y. S.; Wang, H. L. ACS Catal. 2019, 9, 10894.  doi: 10.1021/acscatal.9b03158

    14. [14]

      Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; Hahn, C.; Jaramillo, T. F. Nat. Catal. 2018, 1, 764.  doi: 10.1038/s41929-018-0139-9

    15. [15]

      Zhu, X. Z.; Yip, H. K.; Zhuo, X. L.; Jiang, R. B.; Chen, J. L.; Zhu, X.-M.; Yang, Z.; Wang, J. F. J. Am. Chem. Soc. 2017, 139, 13837.  doi: 10.1021/jacs.7b07462

    16. [16]

      Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Chem. Commun. 2016, 52, 10229.  doi: 10.1039/C6CC03717H

    17. [17]

      Cai, Z.; Kuang, Y.; Luo, L.; Wang, L. R.; Sun, X. M. Acta Chim. Sinica 2013, 71, 1265(in Chinese).
       

    18. [18]

      Liu, B. L.; Zhang, H. C.; Ding, Y. Chin. Chem. Lett. 2018, 29, 1725.  doi: 10.1016/j.cclet.2018.12.006

    19. [19]

      Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. J. Am. Chem. Soc. 2019, 141, 2490.  doi: 10.1021/jacs.8b12381

    20. [20]

      Huang, X.; Li, Y.; Zhou, H.; Zhong, X.; Duan, X.; Huang, Y. Chem. Eur. J. 2012, 18, 9505.  doi: 10.1002/chem.201200817

    21. [21]

      Wu, K. H.; Zhou, Y. W.; Ma, X. Y.; Ding, C.; Cai, W. B. Acta Chim. Sinica 2018, 76, 292(in Chinese).  doi: 10.7503/cjcu20170465

    22. [22]

      Xu, S. Y.; Liu, Z. H.; Zhang, H.; Yu, J. R. Acta Chim. Sinica 2019, 77, 427(in Chinese).
       

    23. [23]

      Jung, H.; Cha, H.; Lee, D.; Yoon, S. ACS Nano 2015, 9, 12292.  doi: 10.1021/acsnano.5b05568

    24. [24]

      Scholl, J. A.; Garcia-Etxarri, A.; Koh, A. L.; Dionne, J. A. Nano Lett. 2013, 13, 564.  doi: 10.1021/nl304078v

    25. [25]

      Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736.  doi: 10.1021/cr1004452

    26. [26]

      Lan, X.; Chen, Z.; Liu, B. J.; Ren, B.; Henzie, J.; Wang, Q. B. Small 2013, 9, 2308.  doi: 10.1002/smll.201202503

    27. [27]

      Zhong, Z. Y.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A. J. Phys. Chem. B 2004, 108, 4046.  doi: 10.1021/jp037056a

    28. [28]

      Maye, M. M.; Nykypanchuk, D.; Cuisinier, M.; van der Lelie, D.; Gang, O. Nat. Mater. 2009, 8, 388.  doi: 10.1038/nmat2421

    29. [29]

      Yu, H.; Man, T. T.; Ji, W.; Shi, L. L.; Wu, C. W.; Pei, H.; Zhang, C. Chin. Chem. Lett. 2019, 30, 175.  doi: 10.1016/j.cclet.2018.04.020

    30. [30]

      Kim, J.-Y.; Kotov, N. A. Chem. Mater. 2014, 26, 134.  doi: 10.1021/cm402675k

    31. [31]

      Li, Y. L.; Deng, Z. X. Acc. Chem. Res. 2019, 52, 3442.  doi: 10.1021/acs.accounts.9b00463

    32. [32]

      Song, L.; Deng, Z. X. ChemNanoMat 2017, 3, 698.  doi: 10.1002/cnma.201700222

    33. [33]

      Fang, L. L.; Wang, Y. L.; Liu, M.; Gong, M.; Xu, A.; Deng, Z. X. Angew. Chem. Int. Ed. 2016, 55, 14296.  doi: 10.1002/anie.201608271

    34. [34]

      Fang, L. L.; Liu, D. L.; Wang, Y. L.; Li, Y. J.; Song, L.; Gong, M.; Li, Y.; Deng, Z. X. Nano Lett. 2018, 18, 7014.  doi: 10.1021/acs.nanolett.8b02965

    35. [35]

      Liu, M.; Fang, L. L.; Li, Y. L.; Gong, M.; Xu, A.; Deng, Z. X. Chem. Sci. 2016, 7, 5435.  doi: 10.1039/C6SC01407K

    36. [36]

      Wang, Y. L.; Fang, L. L.; Gong, M.; Deng, Z. X. Chem. Sci. 2019, 10, 5929.  doi: 10.1039/C9SC00403C

    37. [37]

      Sun, Y. Natl. Sci. Rev. 2015, 2, 329.  doi: 10.1093/nsr/nwv037

    38. [38]

      Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B. J. Am. Chem. Soc. 2005, 127, 34.  doi: 10.1021/ja045220h

    39. [39]

      Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. J. Am. Chem. Soc. 2012, 134, 15822.  doi: 10.1021/ja305329g

    40. [40]

      Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Nano Lett. 2005, 5, 379.  doi: 10.1021/nl047955q

    41. [41]

      Feng, Y. H.; He, J. T.; Wang, H.; Tay, Y. Y.; Sun, H.; Zhu, L. F.; Chen, H. Y. J. Am. Chem. Soc. 2012, 134, 2004.  doi: 10.1021/ja211086y

    42. [42]

      Sun, Y. G.; Foley, J. J.; Peng, S.; Li, Z.; Gray, S. K. Nano Lett. 2013, 13, 3958.  doi: 10.1021/nl402361b

    43. [43]

      Song, T. J.; Tang, L. H.; Tan, L. H.; Wang, X. J.; Satyavolu, N. S. R.; Xing, H.; Wang, Z. D.; Li, J. H.; Liang, H. J.; Lu, Y. Angew. Chem. Int. Ed. 2015, 54, 8114.  doi: 10.1002/anie.201500838

    44. [44]

      Lee, J. H.; You, M. H.; Kim, G. H.; Nam, J. M. Nano Lett. 2014, 14, 6217.  doi: 10.1021/nl502541u

    45. [45]

      Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722.  doi: 10.1021/acs.chemrev.5b00482

    46. [46]

      Chen, S. T.; Jenkins, S. V.; Tao, J.; Zhu, Y. M.; Chen, J. Y. J. Phys. Chem. C 2013, 117, 8924.  doi: 10.1021/jp4013653

    47. [47]

      Osowiecki, W. T.; Ye, X. C.; Satish, P.; Bustillo, K. C.; Clark, E. L.; Alivisatos, A. P. J. Am. Chem. Soc. 2018, 140, 8569.  doi: 10.1021/jacs.8b04558

    48. [48]

      Wu, S. H.; Chen, D. H. J. Colloid Interface Sci. 2004, 273, 165.  doi: 10.1016/j.jcis.2004.01.071

    49. [49]

      Lin, M. H.; Kim, G. H.; Kim, J. H.; Oh, J. W.; Nam, J. M. J. Am. Chem. Soc. 2017, 139, 10180.  doi: 10.1021/jacs.7b04202

    50. [50]

      Kim, J. H.; Park, J. E.; Lin, M.; Kim, S.; Kim, G. H.; Park, S.; Ko, G.; Nam, J. M. Adv. Mater. 2017, 29, 1702945.  doi: 10.1002/adma.201702945

    51. [51]

      Kislenko, V. N.; Oliynyk, L. P. J. Polym. Sci., Part A:Polym. Chem. 2002, 40, 914.  doi: 10.1002/pola.10157

    52. [52]

      Hohenester, U.; Trügler, A. Comput. Phys. Commun. 2012, 183, 370.  doi: 10.1016/j.cpc.2011.09.009

    53. [53]

      Wolf, L. K.; Gao, Y.; Georgiadis, R. M. Langmuir 2004, 20, 3357.  doi: 10.1021/la036125+

    54. [54]

      Fang, Y. J. Chem. Phys. 1998, 108, 4315.

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    8. [8]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    9. [9]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    10. [10]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    11. [11]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    14. [14]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(10)
  • Abstract views(877)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return