Citation: Yan Tao, Liu Zhenhua, Song Xinyue, Zhang Shusheng. Construction and Development of Tumor Microenvironment Stimulus-Responsive Upconversion Photodynamic Diagnosis and Treatment System[J]. Acta Chimica Sinica, ;2020, 78(7): 657-669. doi: 10.6023/A20040132 shu

Construction and Development of Tumor Microenvironment Stimulus-Responsive Upconversion Photodynamic Diagnosis and Treatment System

  • Corresponding author: Song Xinyue, songxinyue428@163.com Zhang Shusheng, shushzhang@126.com
  • Received Date: 29 April 2020
    Available Online: 15 June 2020

    Fund Project: the Key Research Plan of Shandong Province 2017GGX40110the Nature Science Foundation of Shandong Province ZR2018ZC0231the National Natural Science Foundation of China 21775063Project supported by the National Natural Science Foundation of China (No. 21775063), the Nature Science Foundation of Shandong Province (No. ZR2018ZC0231) and the Key Research Plan of Shandong Province (No. 2017GGX40110)

Figures(24)

  • Photodynamic therapy (PDT) is a new type of non-invasive tumor therapy, which has the advantages of less trauma and toxicity, good selectivity, no drug resistance and repeatable treatment. Thus, PDT has achieved remarkable results in the treatment of cancer. In order to increase its depth of tissue penetration, researchers proposed to build novel PDT nano-theranostic systems based on upconversion nanoparticles (referred as upconversion photodynamic nanotheranostic system). Based on the luminescence resonance energy transfer process, upconversion photodynamic nanotheranostic systems use the emitted fluorescence of upconversion nanoparticles which is excited by the near-infrared laser to further excite the loaded photosensitizer, thus it is advantageous to the treatment of deep tumors. Via the multi-functional structure design, the newly developed upconversion photodynamic nanotheranostic agent could achieve the targeted transportation, imaging diagnosis and stimulation response for the achievement of on-demand treatment, which is the trend for the development of nanomedicine in the future. At present, researchers pay more and more attention to the construction of tumor microenvironment responsive nanotheranostic system, in order to improve the targeting to the tumor section, improve the PDT efficacy, and reduce the toxicity to the surrounding normal tissues. This work mainly discusses the construction and development of upconversion nanotheranostic systems based on the stimulation of pH, enzyme and hydrogen peroxide. In addition, we prospect its development in the future.
  • 加载中
    1. [1]

      Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Chem. Soc. Rev. 2015, 44, 1302.  doi: 10.1039/C4CS00173G

    2. [2]

      Liu, J. L.; Liu, Y.; Liu, Q.; Li, C. Y.; Sun, L. N.; Li, F. Y. J. Am. Chem. Soc. 2011, 133, 15276.  doi: 10.1021/ja205907y

    3. [3]

      Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Adv. Funct. Mater. 2009, 19, 853.  doi: 10.1002/adfm.200800765

    4. [4]

      Yi, G. S.; Peng, Y. F.; Gao, Z. Q, Chem. Mater. 2011, 23, 2729.  doi: 10.1021/cm103175s

    5. [5]

      Auzel, F. E. P. IEEE. 1973, 61, 758.  doi: 10.1109/PROC.1973.9155

    6. [6]

      Yi, G. S.; Chow, G. M. Adv. Funct. Mater. 2006, 16, 2324.  doi: 10.1002/adfm.200600053

    7. [7]

      Liu, C. H.; Wang, H.; Li, X.; Chen, D. P. J. Mater. Chem. 2009, 19, 3546.  doi: 10.1039/b820254k

    8. [8]

      Zijlmans, H. J. M. A. A.; Bonnet, J.; Burton, J.; Kardos, K.; Vail, T.; Niedbala, R. S.; Tanke, H. J. Anal. Biochem. 1999, 267, 30.  doi: 10.1006/abio.1998.2965

    9. [9]

      Chen, C.; Sun, L. D.; Li, Z. X.; Li, L. L.; Zhang, J.; Zhang, Y. W.; Yan, C. H. Langmuir 2010, 26, 8797.  doi: 10.1021/la904545a

    10. [10]

      Wang, Y. F.; Li, L. M.; Xu, T. Y.; Bai, Y. X.; Xie, R.; Yang, P. P. J. Mod. Oncol. 2017, 25, 1489(in Chinese).  doi: 10.3969/j.issn.1672-4992.2017.09.039

    11. [11]

      Pan, Y. S.; Ding, J. Guangzhou Chem. Ind. 2016, 12, 33(in Chinese).

    12. [12]

      Qian, H. S.; Guo, H, C.; Ho, P. C. L.; Mahendran, R.; Yong, Z. Small 2009, 5, 2285.  doi: 10.1002/smll.200900692

    13. [13]

      Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. J. Am. Chem. Soc. 2007, 129, 4526.  doi: 10.1021/ja0700707

    14. [14]

      Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Biomaterials 2011, 32, 6145.  doi: 10.1016/j.biomaterials.2011.05.007

    15. [15]

      Hamblin, M. R. Dalton Trans. 2018, 47, 8571.  doi: 10.1039/C8DT00087E

    16. [16]

      Cheng, F.; Huang, L. T.; Wang, H. H.; Liu, Y. J.; Kandhadi, J.; Wang, H.; Ji, L. N.; Liu, H. Y. Chin. J. Chem. 2017, 35, 86.  doi: 10.1002/cjoc.201600633

    17. [17]

      Li, M. L.; Peng, X. J. Acta Chim. Sinica 2016, 74, 959(in Chinese).  doi: 10.6023/A16100553

    18. [18]

      Feng, T.; Xue, Z. B.; Yin, J. J.; Jiang, X.; Feng, Y. Q.; Meng, S. X. Chin. J. Org. Chem. 2019, 39, 1891(in Chinese).

    19. [19]

      Feng, L. L.; He, F.; Liu, B.; Yang, G. X.; Gai, S. L.; Yang, P. P.; Li, C. X.; Dai, Y. L.; Lv, R. C.; Lin, J. Chem. Mater. 2016, 28, 7935.  doi: 10.1021/acs.chemmater.6b03598

    20. [20]

      Chan, M. H.; Chen, C. W.; Lee, I. J.; Chan, Y. C.; Tu, D. T.; Hsiao, M.; Chen, C. H.; Chen, X. Y.; Liu, R. S. Inorg. Chem. 2016, 55, 10267.  doi: 10.1021/acs.inorgchem.6b01522

    21. [21]

      Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156(in Chinese).
       

    22. [22]

      Li, Y. F.; Di, Z. H.; Gao, J. H.; Cheng, P.; Di, C. Z.; Zhang, G.; Liu, B.; Shi, X. H.; Sun, L. D.; Li, L. L.; Yan, C. H. J. Am. Chem. Soc. 2017, 139, 13804.  doi: 10.1021/jacs.7b07302

    23. [23]

      Feng, J.; Xu, Z.; Dong, P.; Yu, W. Q.; Liu, F.; Jiang, Q. Y.; Wang, F.; Liu, X. Q. J. Mater. Chem. B 2019, 7, 994.  doi: 10.1039/C8TB02815J

    24. [24]

      Yao, J. Z.; Liu, Y.; Wang, J. W.; Jiang, Q.; She, D. J.; Guo, H. S.; Sun, N. R.; Pang, Z. Q.; Deng, C. H.; Yang, W. L.; Shen, S. Biomaterials 2019, 195, 51.  doi: 10.1016/j.biomaterials.2018.12.029

    25. [25]

      Yue, Z. H.; Hong, T. T.; Song, X. Y.; Wang, Z. H. Chem. Commun. 2018, 54, 10618.  doi: 10.1039/C8CC05121F

    26. [26]

      Song, X. Y.; Yue, Z. H.; Hong, T. T.; Wang, Z. H.; Zhang, S. S. Anal. Chem. 2019, 91, 8549.  doi: 10.1021/acs.analchem.9b01805

    27. [27]

      Liu, K.; Liu, X. M.; Zeng, Q. H.; Zhang, Y. L.; Tu, L. P.; Liu, T.; Kong, X. G.; Wang, Y. H.; Cao, F.; Lambrechts, S. A. G. ACS Nano 2012, 6, 4054.  doi: 10.1021/nn300436b

    28. [28]

      Kumar, B.; Murali, A.; Bharath, A. B.; Giri, S. Nanotechnology 2019, 30, 315102.  doi: 10.1088/1361-6528/ab116e

    29. [29]

      Kostiv, U.; Patsula, V.; Noculak, A.; Podhorodecki, A.; Vetvicka, D.; Pouckova, P.; Sedlakova, Z.; Horak, D. ChemMedChem 2017, 12, 2066.  doi: 10.1002/cmdc.201700508

    30. [30]

      Feng, Y. S.; Wu, Y. N.; Zuo, J.; Tu, L. P.; Que, I.; Chang, Y. L.; Cruz, L. J.; Chan, A.; Zhang, H. Biomaterials 2019, 201, 33.  doi: 10.1016/j.biomaterials.2019.02.015

    31. [31]

      Abouelmagd, S. A.; Hyun, H.; Yeo, Y. Expert Opin. Drug Del. 2014, 11, 1601.  doi: 10.1517/17425247.2014.930434

    32. [32]

      Ju, M. J.; Pang, J. D.; Xu, L. G. Chin. J. Chem. 2017, 35, 1445.  doi: 10.1002/cjoc.201700070

    33. [33]

      Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. J. Am. Chem. Soc. 2011, 133, 17560.  doi: 10.1021/ja207150n

    34. [34]

      Lee, E. S.; Gao, Z. G.; Bae, Y. H. J. Control. Release 2008, 132, 164.  doi: 10.1016/j.jconrel.2008.05.003

    35. [35]

      Wang, Y. H.; Song, S. Y.; Zhang, S. T.; Zhang, H. J. Nano Today 2019, 25, 38.  doi: 10.1016/j.nantod.2019.02.007

    36. [36]

      Wang, C.; Cheng, L.; Liu, Y. M.; Wang, X. J.; Ma, X. X.; Deng, Z. Y.; Li, Y. G.; Liu, Z. Adv. Funct. Mater. 2013, 23, 3077.  doi: 10.1002/adfm.201202992

    37. [37]

      Wang, S.; Zhang, L.; Dong, C. H.; Su, L.; Wang, H. J.; Chang, J. Chem. Commun. 2015, 51, 406.  doi: 10.1039/C4CC08178A

    38. [38]

      Guan, Y.; Lu, H. G.; Li, W.; Zheng, Y. D.; Jiang, Z.; Zou, J. L.; Gao, H. ACS Appl. Mater. Inter. 2017, 9, 26731.  doi: 10.1021/acsami.7b07768

    39. [39]

      Li, F. Y.; Du, Y.; Liu, J. N.; Sun, H.; Wang, J.; Li, R. Q.; Kim, D.; Hyeon, T.; Ling, D. Adv. Mater. 2018, 30, 1802808.  doi: 10.1002/adma.201802808

    40. [40]

      Juarez, A. V.; Sosa, L. d. V.; Paul, A. L. D.; Costa, A. P.; Farina, M.; Leal, R. B.; Torres, A. I.; Pons, P. J. Photoch. Photobio. B 2015, 153, 445.  doi: 10.1016/j.jphotobiol.2015.10.030

    41. [41]

      Liu, X. M.; Fan, Z. Q.; Zhang, L.; Jin, Z.; Yan, D. M.; Zhang, Y. L.; Li, X. D.; Tu, L. P.; Xue, B.; Chang, Y. L.; Zhang, H.; Kong, X. G. Biomaterials 2017, 144, 73.  doi: 10.1016/j.biomaterials.2017.08.010

    42. [42]

      Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S. C.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed, J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.; Wang, B.; Wendt, M. D.; Zhang, H. C.; Fesik, S. W.; Rosenberg, S. H. Nature 2005, 435, 677.  doi: 10.1038/nature03579

    43. [43]

      Liu, S. K.; Li, W. T.; Dong S. M.; Gai, S. L; Dong, Y. S.; Yang, D.; Dai, Y. L.; He, F.; Yang, P. P. ACS Appl. Mater. Inter. 2019, 11, 47659.  doi: 10.1021/acsami.9b11973

    44. [44]

      Yu, Z. Z.; Ge, Y. G.; Sun, Q. Q.; Pan, W.; Wan, X. Y.; Li, N.; Tang, B. Chem. Sci. 2018, 9, 3563.  doi: 10.1039/C8SC00098K

    45. [45]

      Lee, G. Y.; Qian, W. P.; Wang, L. Y.; Wang, Y. A.; Staley, C. A.; Satpathy, M.; Nie, S. M.; Mao, H.; Yang, L. ACS Nano 2013, 7, 2078.  doi: 10.1021/nn3043463

    46. [46]

      Li, Y. Y.; Zhang, X. B.; Zhang, Y.; Zhang, Y.; He, Y. L.; Liu, Y.; Ju, H. X. ACS Appl. Mater. Inter. 2020, 12, 19313.  doi: 10.1021/acsami.0c03432

    47. [47]

      Ai, X. Z.; Ho, C. J. H.; Aw, J.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X.; Wang, Y.; Liu, X. G.; Chen, H. B.; Gao, M. Y.; Chen, X. Y.; Yeow, E. K. L.; Liu, G.; Olivo, M.; Xing, B. G. Nat. Commun. 2016, 7, 10432.  doi: 10.1038/ncomms10432

    48. [48]

      Dickinson, B. C.; Chang, C. J. Nat. Chem. Biol. 2011, 7, 504.  doi: 10.1038/nchembio.607

    49. [49]

      Cai, H. J.; Shen, T. T.; Zhang, J.; Shan, C. F.; Jia, J. G.; Li, X.; Liu, W. S.; Tang, Y. J. Mater. Chem. B 2017, 5, 2390.  doi: 10.1039/C7TB00314E

    50. [50]

      Liang, S.; Sun, C. Q.; Yang, P. P.; Ma, P. A.; Huang, S. S.; Cheng, Z. Y.; Yu, X. F.; Lin, J. Biomaterials 2020, 240, 119850.  doi: 10.1016/j.biomaterials.2020.119850

    51. [51]

      Gu, T. X.; Cheng, L.; Gong, F.; Xu, J.; Li, X.; Han, G. R.; Liu, Z. ACS Appl. Mater. Inter. 2018, 10, 15494.  doi: 10.1021/acsami.8b03238

    52. [52]

      Lin, J.; Ding, B. B.; Shao, S.; Xiao, H. H; Sun, C. Q.; Cai, X. C; Jiang, F.; Zhao, X. Y.; Ma, P. A. Nanoscale 2019, 11, 14654.  doi: 10.1039/C9NR04858H

    53. [53]

      Dong, S. M.; Xu, J. T.; Jia, T.; Xu, M. S.; Zhong, C. N.; Yang, G. X.; Li, J. R.; Yang, D.; He, F.; Gai, S. L.; Yang, P. P.; Lin, J. Chem. Sci. 2019, 10, 4259.  doi: 10.1039/C9SC00387H

    54. [54]

      Jia, T.; Xu, J. T.; Dong, S. M.; He, F.; Zhong, C. N.; Yang, G. X.; Bi, H. T.; Xu, M. S.; Hu, Y. K.; Yang, D.; Yang, P. P.; Lin, J. Chem. Sci. 2019, 10, 8618.  doi: 10.1039/C9SC01615E

    55. [55]

      Xu, J. T.; Han, W.; Yang, P. P.; Jia, T.; Dong, S. M.; Bi, H. T.; Gulzar, A.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Li, C. X. Adv. Funct. Mater. 2018, 28, 1803804.  doi: 10.1002/adfm.201803804

    56. [56]

      Zhao, L.; Ge, X. Q.; Zhao, H. J.; Shi, L. Y.; Capobianco, J.; Jin, D. Y.; Sun, L. N. ACS Applied Nano Materials 2018, 1, 1648.  doi: 10.1021/acsanm.8b00134

    57. [57]

      Yuan, J.; Cen, Y.; Kong, X. J.; Wu, S.; Liu, C. L.; Yu, R. Q.; Chu, X. ACS Appl. Mater. Inter. 2015, 7, 10548.  doi: 10.1021/acsami.5b02188

    58. [58]

      Ai, X. Z.; Hu, M.; Wang, Z. M.; Lyu, L.; Zhang, W. M.; Li, J.; Yang, H. H.; Lin, J.; Xing, B. G. Bioconjugate Chem. 2018, 29, 928.  doi: 10.1021/acs.bioconjchem.8b00068

    59. [59]

      Sun, Q. Q.; He, F.; Sum, C. Q.; Wang, X. X.; Li, C. X.; Xu, J. T.; Yang, D.; Bi, H. T.; Gia, S. L.; Yang, P. P. ACS Appl. Mater. Inter. 2018, 10, 33901.  doi: 10.1021/acsami.8b10207

    60. [60]

      Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. J. Am. Chem. Soc. 2011, 133, 20168.  doi: 10.1021/ja2100774

    61. [61]

      Fan, W. P.; Bu, W. B.; Shen, B.; He Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Adv. Mater. 2015, 27, 4155.  doi: 10.1002/adma.201405141

    62. [62]

      Feng, L. L.; He, F.; Dai, Y. L.; Gai, S. L.; Zhong, C. N.; Li, C. X.; Yang, P. P. Biomater. Sci-UK. 2017, 5, 2456.  doi: 10.1039/C7BM00798A

    63. [63]

      Gu, T. X.; Cheng, L.; Gong, F.; Xu, J.; Li, X.; Liu, Z. ACS Appl. Mater. Inter. 2018, 10, 15494.  doi: 10.1021/acsami.8b03238

    64. [64]

      Xu, J. T.; He, F.; Cheng, Z. Y.; Lv, R. C.; Dai, Y. L.; Gulzar, A.; Liu, B.; Bi, H. T.; Yang, D.; Gai, S. L.; Yang, P. P.; Lin, J. Chem. Mater. 2017, 29, 7615.  doi: 10.1021/acs.chemmater.7b03461

    65. [65]

      Lv, R. C.; Wang, Y. X.; Liu, J.; Feng, M.; Yang, F.; Jiang, X.; Tian, J. ACS Biomater. Sci. Eng. 2019, 5, 3100.  doi: 10.1021/acsbiomaterials.9b00438

    66. [66]

      Zhang, C.; Chen, W. H.; Liu, L. H.; Qiu, W. X.; Yu, W. Y.; Zhang, X. Z. Adv. Funct. Mater. 2017, 27, 1700626.  doi: 10.1002/adfm.201700626

    67. [67]

      Jiang, W.; Zhang, C.; Ahmed, A.; Zhao, Y. L.; Deng, Y.; Ding, Y.; Cai, J. F.; Hu, Y. Adv. Healthc. Mater. 2019, 8, 1900972.  doi: 10.1002/adhm.201900972

    68. [68]

      Hu, P.; Wu, T.; Fan, W. P.; Chen, L.; Liu, Y. Y.; Ni, D. L.; Bu, W. B.; Shi, J. L. Biomaterials 2017, 141, 86.  doi: 10.1016/j.biomaterials.2017.06.035

    69. [69]

      Bi, H. T.; Dai, Y. L.; Yang, P. P.; Xu, J. T.; Yang, D.; Gai, S. L.; He, F.; Liu, B.; Zhong, C. N.; An, G. H.; Lin, J. Small 2018, 14, 1703809.  doi: 10.1002/smll.201703809

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    8. [8]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(18)
  • Abstract views(2399)
  • HTML views(468)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return