Citation: Fu Jingru, Ben Teng. Fabrication of a Novel Covalent Organic Framework Membrane and Its Gas Separation Performance[J]. Acta Chimica Sinica, ;2020, 78(8): 805-814. doi: 10.6023/A20040128 shu

Fabrication of a Novel Covalent Organic Framework Membrane and Its Gas Separation Performance

  • Corresponding author: Ben Teng, tben@jlu.edu.cn
  • Received Date: 28 April 2020
    Available Online: 9 June 2020

    Fund Project: the Science and Technology Department of Jilin Province Foundation 20180414009GHthe National Natural Science Foundation of China 21871103"111" Project BP0719036Project supported by the National Natural Science Foundation of China (Nos. 91956108, 21871103), "111" Project (No. BP0719036) and the Science and Technology Department of Jilin Province Foundation (No. 20180414009GH)the National Natural Science Foundation of China 91956108

Figures(14)

  • Herein, we employ 2, 5-dimethoxyterephthalaldehyde (DMTA) containing ether oxygen group in the structure as the construction unit to react with tetra-(4-anilyl)-methane (TAM) through Schiff-based condensation reaction in a Teflon-lined autoclave to synthesize a novel three-dimensional covalent organic framework named DMTA-COF. Furthermore, the condensation reaction was confirmed by Fourier transform infrared spectroscopy (FT-IR). The crystal structure of DMTA-COF was analyzed by the powder X-ray diffraction (PXRD) measurement in conjunction with structural simulation. The morphology, thermal stability, porosity and pore distribution of DMTA-COF were measured by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and N2 adsorption-desorption at 77 K. The high affinity for CO2 adsorption was also confirmed by low pressure CO2 sorption. Considering the relatively small pore size and the strong CO2 adsorption interaction of DMTA-COF due to an abundant of ether oxygen group and imine linkage, we synthesized one continuous supported DMTA-COF membrane for H2/CO2 separation. In our study, the porous Al2O3 support surface was first coated with polyaniline (PANI) and was then further functionalized with aldehyde groups by reaction with DMTA at 150 ℃ for 1 h. Finally, in situ growth of the COF membrane utilizing the covalent linkage yielded a novel continuous DMTA-COF membrane. X-ray diffraction (XRD) result indicated that the DMTA-COF membrane was pure phase and had high crystallinity. From SEM characterization, we could see that the DMTA-COF membrane was compact and well intergrowth and adhered to the support tightly. Gas separation performance results shown that DMTA-COF membrane had a high H2 permeance and selectivity of H2/CO2. For DMTA-COF membrane, the 1:1 binary mixture gas separation factors of H2/CO2 calculated as the gas molar ratios in permeate and retentate side was 8.3 at room temperature and atmospheric pressure. And H2/CO2 separation factor of DMTA-COF membrane exceeded the corresponding Knudsen coefficient (4.7), with H2 permeance of up to 6.3×10-7 mol·m-2·s-1·Pa-1. Because of its outstanding characteristics, the novel DMTA-COF membrane is expected to be widely used in the field of H2 purification and separation.
  • 加载中
    1. [1]

      Koros, W. J.; Zhang, C. Nat. Mater. 2017, 16, 289.  doi: 10.1038/nmat4805

    2. [2]

      Huang, A.-S.; Liang, F.-Y.; Steinbach, F.; Caro. J. J. Membr. Sci. 2010, 350, 5.  doi: 10.1016/j.memsci.2009.12.029

    3. [3]

      Huang, A.-S.; Caro, J. J. Mater. Chem. 2011, 21, 11424.  doi: 10.1039/c1jm11549a

    4. [4]

      Shi, K.-Y.; Chi, Y.-J.; Jin, X.-Q.; Xu, M.; Yuan, F.-L.; Fu, H.-G. Acta Chim. Sinica 2005, 63, 885.
       

    5. [5]

      Huang, A.-S.; Wang, N.-Y.; Kong, C.-L.; Caro, J. Angew. Chem. Int. Ed. 2012, 51, 10551.  doi: 10.1002/anie.201204621

    6. [6]

      Ben, T.; Lu, C.-J.; Pei, C.-Y.; Xu, S.-X.; Qiu, S.-L. Chem. Eur. J. 2012, 18, 10250.  doi: 10.1002/chem.201201574

    7. [7]

      Liu, B.; Tang, L.-X.; Lian, Y.-H.; Li, Z.; Sun, C.-Y.; Chen, G.-J. Acta Chim. Sinica 2013, 71, 920.

    8. [8]

      Guo, H.-L.; Zhu, G.-S.; Hewitt, I. J.; Qiu, S.-L. J. Am. Chem. Soc. 2009, 131, 1646.  doi: 10.1021/ja8074874

    9. [9]

      Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; McKeown, N. B.; Fritsch, D. J. Membr. Sci. 2005, 251, 263.  doi: 10.1016/j.memsci.2005.01.009

    10. [10]

      Diercks, C. S.; Yaghi, O. M. Science 2017, 355, 6328.

    11. [11]

      Chen, Q.-D.; Tang, J.-J.; Fang, Q.-R. Chem. J. Chin. Univ. 2018, 39, 2357.

    12. [12]

      Huang, N.; Wang, P.; Jiang, D.-L. Nat. Rev. Mater. 2016, 1, 16068.  doi: 10.1038/natrevmats.2016.68

    13. [13]

      Wang, Z.-T.; Li, H.; Yan, S.-C.; Fang, Q.-R. Acta Chim. Sinica 2020, 78, 63.
       

    14. [14]

      Huang, W.; Li, Y.-G. Chin. J. Chem. 2019, 37, 1291.  doi: 10.1002/cjoc.201900375

    15. [15]

      Peng, Z.-K.; Ding, H.-M.; Chen, R.-F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681.
       

    16. [16]

      Dong, G.-X.; Lee, Y. M. J. Mater. Chem. A 2017, 5, 13294.  doi: 10.1039/C7TA04015F

    17. [17]

      Yuan, S.-S.; Li, X.; Zhu, J.-Y.; Zhang, G.; Puyvelde, P. V.; Bruggen, B. V. Chem. Soc. Rev. 2019, 48, 2665.  doi: 10.1039/C8CS00919H

    18. [18]

      Wang, J.; Zhu, J.-Y.; Zhang, Y.-T.; Liu, J.-D.; Bruggen, B. V. Nanoscale 2017, 9, 2942.  doi: 10.1039/C6NR08417F

    19. [19]

      Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.  doi: 10.1039/C2CS35072F

    20. [20]

      Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. J. Am. Chem. Soc. 2011, 133, 11478.  doi: 10.1021/ja204728y

    21. [21]

      Kandambeth, Sharath.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Rahul, B. J. Am. Chem. Soc. 2012, 134, 19524.  doi: 10.1021/ja308278w

    22. [22]

      Zhou, H.-C.; Long, J.-R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.  doi: 10.1021/cr300014x

    23. [23]

      Chung, T. S.; Jiang, L.-Y.; Li, Y.; Kulprathipanja, S. Prog. Polym. Sci. 2007, 32, 483.  doi: 10.1016/j.progpolymsci.2007.01.008

    24. [24]

      Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952.  doi: 10.1021/ja408243n

    25. [25]

      Liu, X.-H.; Guan, C.-Z.; Ding, S.-Y.; Wang, W.; Yan, H.-Y.; Wang, D.; Wan, L.-J. J. Am. Chem. Soc. 2013, 135, 28, 10470.

    26. [26]

      Dai, W.-Y.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y.-H.; Schlüter, D.; Zhang, W. Angew. Chem., Int. Ed. 2016, 55, 213.  doi: 10.1002/anie.201508473

    27. [27]

      Dey, K.; Pal, M.; Rout, K. C.; Kunjattu-H, S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Baneriee, R. J. Am. Chem. Soc. 2017, 139, 13083.  doi: 10.1021/jacs.7b06640

    28. [28]

      Fu, J.-R.; Das, S.; Xing, G.-L.; Ben, T.; Valtchev, V.; Qiu, S.-L. J. Am. Chem. Soc. 2016, 138, 7673.  doi: 10.1021/jacs.6b03348

    29. [29]

      Fan, H.-W.; Mundstock, A.; Feldhoff, A.; Knebel, A.; Gu, J.-H.; Meng, H.; Caro, J. J. Am. Chem. Soc. 2018, 140, 10094.  doi: 10.1021/jacs.8b05136

    30. [30]

      Fan, H.-W.; Mundstock, A.; Gu, J.-H.; Meng, H.; Caro, J. J. Mater. Chem. A. 2018, 6, 16849.  doi: 10.1039/C8TA05641B

    31. [31]

      Segura, J. L.; Mancheo, M. J.; Zamora, F. Chem. Soc. Rev. 2016, 45, 5635.  doi: 10.1039/C5CS00878F

    32. [32]

      Ma, Y.-X.; Li, Z.-J.; Wei, L.; Ding, S.-Y.; Zhang, Y.-B.; Wang, W. J. Am. Chem. Soc. 2017, 139, 4995.  doi: 10.1021/jacs.7b01097

    33. [33]

      Zhang, Y.-B.; Su, J.; Furukawa, H.; Yun, Y.-F.; Gándara, F.; Duong, A.; Zou, X.-D.; Yaghi, O. M. J. Am. Chem. Soc. 2013, 135, 16336.  doi: 10.1021/ja409033p

    34. [34]

      Bureekaew, S.; Sato, H.; Matsuda, R.; Kubota, Y.; Hirose, R.; Kim, J.; Kato, K.; Takata, M.; Kitagawa, S. Angew. Chem., Int. Ed. 2010, 49, 7660.  doi: 10.1002/anie.201002259

    35. [35]

      Reichenbach, C.; Kalies, G.; Lincke, J.; Lässig, D, ; Krautscheid, H.; Moellmer, J.; Thommes, M. Microporous Mesoporous Mater. 2011, 142, 592.  doi: 10.1016/j.micromeso.2011.01.005

    36. [36]

      Feng, S.-C.; Ren, J.-Z.; Li, H.; Hua, K.-S.; Li, X.-X.; Deng, M.-C. Membr. Sci. Technol. 2013, 33, 53.

    37. [37]

      Lin, H.-Q.; Freeman, B. D. J. Mol. Struct. 2005, 739, 57.  doi: 10.1016/j.molstruc.2004.07.045

    38. [38]

      Lu, H.; Wang, C.; Chen, J.-J.; Ge, R.-L.; Leng, W.-G.; Dong, B.; Huang, J.; Gao, Y.-N. Chem. Commun. 2015, 51, 15562.  doi: 10.1039/C5CC06742A

    39. [39]

      Robeson, L. M. J. Membr. Sci. 2008, 320, 390.  doi: 10.1016/j.memsci.2008.04.030

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    14. [14]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(28)
  • Abstract views(1958)
  • HTML views(485)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return