Citation: Yin Cen, Wang Zikuan, Liu Dan, Peng Zhantao, Song Huanjun, Zhu Hao, Chen Qiwei, Wu Kai. Adsorption and Self-assembly of meso-tetra(p-methoxyphenyl)-porphyrinatocobalt(II) on Coinage Metal Surfaces[J]. Acta Chimica Sinica, ;2020, 78(7): 695-702. doi: 10.6023/A20040125 shu

Adsorption and Self-assembly of meso-tetra(p-methoxyphenyl)-porphyrinatocobalt(II) on Coinage Metal Surfaces

  • Corresponding author: Chen Qiwei, chenqw@pku.edu.cn Wu Kai, kaiwu@pku.edu.cn
  • Received Date: 28 April 2020
    Available Online: 8 July 2020

    Fund Project: Project supported by the Ministry of Science and Technology (No. 2017M620495) and the National Natural Science Foundation of China (Nos. 21821004, 21932001)the National Natural Science Foundation of China 21821004the National Natural Science Foundation of China 21932001the Ministry of Science and Technology 2017M620495

Figures(9)

  • The adsorption and self-assembly of meso-tetra(p-methoxyphenyl)porphyrinatocobalt(Ⅱ)[Co(TAP)] on Au(111), Ag(111) and Cu(111) have been systematically studied by ultrahigh vacuum low-temperature scanning tunneling microscopy (STM). The atomically flat metal substrate surfaces are prepared by cycled ion sputtering and subsequent annealing at 750 K. Co(TAP) molecules are deposited onto the substrate surfaces via thermal evaporation from a home-made tantalum boat. The as-prepared samples are then annealed to achieve energetically stable self-assembly structures and transferred to the STM chamber for further analyses. All STM measurements are carried out at about 4.4 K. On these metal surfaces, Co(TAP) molecules mainly form two types of two-dimensional molecular assembly structures A and B. Structure A only exists on Au(111) and Ag(111), while Structure B merely appears on Ag(111) and Cu(111). The intermolecular interactions in Structures A and B are due to π-π stacking and hydrogen bonding, respectively. The difference in strength of the molecule-substrate interaction, which induces conformational changes of peripheral p-methoxyphenyl substituent in Co(TAP) on difference substrate, is attributed to govern the formation of different self-assembly structures on the aforementioned surfaces. The substrate surface also has an effect on the formation of the self-assembly structures. At similar coverage, the percentage of dispersed Co(TAP) molecules follow the sequence:Cu(111) > Au(111) > Ag(111). With the coverage increase, the percentage of dispersed Co(TAP) molecules decreases on all metal surfaces employed in this study. Specifically, on Au(111) and Ag(111), the dispersed Co(TAP) molecules disappear at coverages of about 1 ML and 0.1 ML, respectively, while on Cu(111) they survive even at the coverage of about 0.85 ML. In addition, Structure A gradually dominates on Au(111). On Cu(111), Structure B only occupies half of the surface structures even at nearly saturated coverage. The ratio of Structures A to B almost retains over the whole coverage range on Ag(111). Thermal annealing of the molecule-covered Ag(111) substrate helps the transformation from Structure B to A, and the elimination of the structural domain boundaries as well.
  • 加载中
    1. [1]

      Xing, L. B.; Peng, Z. T.; Li, W. T.; Wu, K. Acc. Chem. Res. 2019, 52, 1048.  doi: 10.1021/acs.accounts.9b00002

    2. [2]

      Liang, H. L.; He, Y.; Ye, Y. C.; Xu, X. G.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y. F.; Li, J. L.; Wu, K. Coord. Chem. Rev. 2009, 253, 2959.  doi: 10.1016/j.ccr.2009.07.028

    3. [3]

      Chen, H. R.; Zhu, H.; Huang, Z. C.; Rong, W. H.; Wu, K. Adv. Mater. 2019, 31, 1902080.  doi: 10.1002/adma.201902080

    4. [4]

      Zhou, X.; Dai, J. X.; Wu, K. Phys. Chem. Chem. Phys. 2017, 19, 31531.  doi: 10.1039/C7CP06177C

    5. [5]

      Berner, S.; Biela, S.; Ledung, G.; Gogoll, A.; Bäckvall, J. E.; Puglia, C.; Oscarsson, S. J. Catal. 2006, 244, 86.  doi: 10.1016/j.jcat.2006.08.017

    6. [6]

      Chugreev, A. L.; Misurkin, I. A. Theo. Exp. Chem. 1989, 24, 388.  doi: 10.1007/BF00535111

    7. [7]

      Pereira, C. F.; Figueira, F.; Mendes, R. F.; Rocha, J.; Hupp, J. T.; Farha, O. K.; Simões, M. M. Q.; Tomé, J. P. C.; Paz, F. A. A. Inorg. Chem. 2018, 57, 3855.  doi: 10.1021/acs.inorgchem.7b03214

    8. [8]

      Zhao, Y. L.; Wang, B. Acta Phys.-Chim. Sin. 2018, 34, 1312(in Chinese).  doi: 10.3866/PKU.WHXB201803011

    9. [9]

      Shiraishi, M.; Ikoma, T. Solid State Phenom. 2011, 189, 3336.

    10. [10]

      Huang, Z. C.; Zhang, Y. J.; He, Y.; Song, H. J.; Yin, C.; Wu, K. Chem. Soc. Rev. 2017, 46, 1955.  doi: 10.1039/C6CS00891G

    11. [11]

      Walch, H.; Dienstmaier, J.; Eder, G.; Gutzler, R.; Schlögl, S.; Sirtl, T.; Das, K.; Schmittel, M.; Lackinger, M. J. Am. Chem. Soc. 2011, 133, 7909.  doi: 10.1021/ja200661s

    12. [12]

      Heim, D.; Ecija, D.; Seufert, K.; Auwärter, W.; Aurisicchio, C.; Fabbro, C.; Bonifazi, D.; Barth, J. V. J. Am. Chem. Soc. 2010, 132, 6783.  doi: 10.1021/ja1010527

    13. [13]

      Olson, J. M. Biochim. Biophys. Acta 1980, 594, 33.  doi: 10.1016/0304-4173(80)90012-9

    14. [14]

      Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004, 35, 561.

    15. [15]

      Castrucci, P.; Tombolini, F.; Scarselli, M.; Bini, S.; Crescenzi, M. D.; Diociaiuti, M.; Casciardi, S.; Khakani, M. A. E.; Rosei, F. Phys. Rev. B 2007, 75, 035420  doi: 10.1103/PhysRevB.75.035420

    16. [16]

      Greef, T. F. A. D.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687.  doi: 10.1021/cr900181u

    17. [17]

      Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.  doi: 10.1126/science.1209688

    18. [18]

      Li, C.; James, L.; Lei, B.; Fan, W.; Zhang, D. H.; Han, J.; Meyyappan, M.; Thompson, M.; Zhou, C. W. J. Phys. Chem. B 2004, 108, 9646.  doi: 10.1021/jp0498421

    19. [19]

      Liu, Z.; Bocian, D. F. Science 2003, 302, 1543.  doi: 10.1126/science.1090677

    20. [20]

      Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Am. Chem. Soc. 1996, 118, 5708.  doi: 10.1021/ja953474k

    21. [21]

      Drain, C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009, 109, 1630.  doi: 10.1021/cr8002483

    22. [22]

      Wang, Y. F.; Zhang, X. R.; Ye, Y. C.; Liang, D. J.; Wang, Y.; Wu, K. Acta Phys.-Chim. Sin. 2010, 26, 933.

    23. [23]

      Browne, W. R.; Feringa, B. L. Nat. Nanotech. 2006, 1, 25.

    24. [24]

      Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.  doi: 10.1126/science.1962191

    25. [25]

      Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L.; Mullen, K.; Fasel, R. Nature 2010, 466, 470.  doi: 10.1038/nature09211

    26. [26]

      Chabinyc, M. L.; Holmlin, R. E.; Haag, R.; Chen, X.; Ismagilov, R. F.; Rampi, M. A.; Whitesides, G. M. In Molecular Electronics with a Metal-Insulator-Metal Junction Based on Self-Assembled Monolayers, ACS Symposium Series, Ed.: Liberman, M., ACS Publications, Washington, USA, 2003, pp. 11730~11736.

    27. [27]

      Fendt, L. A.; Stöhr, M.; Wintjes, N.; Enache, M.; Jung, T. A.; Diederich, F. Chem. Eur. J. 2009, 15, 11139.  doi: 10.1002/chem.200901502

    28. [28]

      Heim, D.; Seufert, K.; Auwärter, W.; Aurisicchio, C.; Fabbro, C.; Bonifazi, D.; Barth, J. V. Nano Lett. 2010, 10, 122.  doi: 10.1021/nl9029994

    29. [29]

      Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nat. Nanotech. 2007, 2, 687.

    30. [30]

      Otsuki, J. Coord. Chem. Rev. 2010, 254, 2311.  doi: 10.1016/j.ccr.2009.12.038

    31. [31]

      Barth, J. V. Annu. Rev. Phys. Chem. 2007, 58, 375.  doi: 10.1146/annurev.physchem.56.092503.141259

    32. [32]

      Zhang, Y. H.; She, Y. B.; Zhong, R. G.; Zhou, X. T.; Ji, H. B. Acta Chim. Sinica 2004, 62, 2228(in Chinese).  doi: 10.3321/j.issn:0567-7351.2004.22.005

    33. [33]

      Li, Y.; Wayland, B. B. Chem. Commun. 2003, 9, 1594.

    34. [34]

      Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689.  doi: 10.1021/cr9901182

    35. [35]

      Lena, F. D.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 959.  doi: 10.1016/j.progpolymsci.2010.05.001

    36. [36]

      Wayland, B. B.; Basickes, L.; Shakti Mukerjee, A.; Wei, M.; Fryd, M. Macromolecules 1997, 116, 8109.

    37. [37]

      Lu, Z.; Fryd, M.; Wayland, B. B. Macromolecules 2004, 37, 2686.  doi: 10.1021/ma035924w

    38. [38]

      Wayland, B. B.; Peng, C. H.; Fu, X.; Lu, Z.; Fryd, M. Macromolecules 2006, 39, 8219.  doi: 10.1021/ma061643n

    39. [39]

      Peng, C. H.; Fryd, M.; Wayland, B. B. Macromolecules 2007, 40, 6814.  doi: 10.1021/ma070836n

    40. [40]

      Peng, C. H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B. Macromolecules 1994, 41, 2368.

    41. [41]

      Li, S.; De, B. B.; Peng, C. H.; Fryd, M.; Wayland, B. B. J. Am. Chem. Soc. 2008, 130, 13373.  doi: 10.1021/ja804010h

    42. [42]

      Zhao, Y.; Yu, M.; Zhang, S.; Liu, Y.; Fu, X. Macromolecules 2014, 47, 6238.  doi: 10.1021/ma5014385

    43. [43]

      Brede, J.; Linares, M.; Kuck, S.; Schwöbel, J.; Scarfato, A.; Chang, S. H.; Hoffmann, G.; Wiesendanger, R.; Lensen, R.; Kouwer, P. H. Nanotechnology 2009, 20, 275602.  doi: 10.1088/0957-4484/20/27/275602

    44. [44]

      Buchner, F.; Kellner, I.; Hieringer, W.; Görling, A.; Steinrück, H. P.; Marbach, H. Phys. Chem. Chem. Phys. 2010, 12, 13082.  doi: 10.1039/c004551a

    45. [45]

      Rojas, G.; Simpson, S.; Chen, X. M.; Kunkel, D. A.; Xiao, J.; Dowben, P. A.; Zurek, E.; Enders, A. Phys. Chem. Chem. Phys. 2012, 14, 4971.  doi: 10.1039/c2cp40254h

    46. [46]

      Auwärter, W.; Klappenberger, F.; Weberbargioni, A.; Schiffrin, A.; Strunskus, T.; Wöll, C.; Pennec, Y.; Riemann, A.; Barth, J. V. J. Am. Chem. Soc. 2007, 129, 11279.  doi: 10.1021/ja071572n

    47. [47]

      Auwärter, W.; Seufert, K.; Klappenberger, F.; Reichert, J.; Weberbargioni, A.; Verdini, A.; Cvetko, D.; Dell'Angela, M.; Floreano, L.; Cossaro, A Phys. Rev. B 2010, 81, 136.

    48. [48]

      Snegaroff, K.; Tan, T. N.; Marquise, N.; Halauko, Y. S.; Harford, P. J.; Roisnel, T.; Matulis, V. E.; Ivashkevich, O. A.; Chevallier, F.; Wheatley, A. E. H. Chem. Eur. J. 2011, 17, 13284.  doi: 10.1002/chem.201101993

    49. [49]

      Rojas, G.; Simpson, S.; Chen, X.; Kunkel, D. A.; Nitz, J.; Xiao, J.; Dowben, P. A.; Zurek, E.; Enders, A. Phys. Chem. Chem. Phys. 2012, 14, 4971.  doi: 10.1039/c2cp40254h

    50. [50]

      Rojas, G.; Chen, X.; Kunkel, D.; Bode, M.; Enders, A. Langmuir 2011, 27, 14267.  doi: 10.1021/la203389d

    51. [51]

      Czoschke, P.; Hong, H.; Basile, L.; Chiang, T. C. Phys. Rev. B 2005, 72, 2071.

    52. [52]

      Seufert, K.; Bocquet, M.-L.; Auwärter, W.; Weber-Bargioni A.; Reichert J.; Lorente, N.; Barth, J. V. Nat. Chem. 2011, 3, 114.  doi: 10.1038/nchem.956

    53. [53]

      Li, J.; Zhang, B. L.; Wang, E. K. Acta Chim. Sinica 1994, 52, 646(in Chinese).  doi: 10.3321/j.issn:0251-0790.1994.05.004

    54. [54]

      Haynes, W. M., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, USA, 2014, Section 12, pp. 15~18.

    55. [55]

      Huang, Z. C.; Dai, Y. Z.; Wen, X. J.; Liu, D.; Lin, Y. X.; Xu, Z.; Pei, J.; Wu, K. Acta Phys.-Chim. Sin. 2020, 36, 1907043.  doi: 10.3866/PKU.WHXB201907043

    56. [56]

      Ye, X. Y.; Li, Z.-H.; Wang, W. M.; Fan, K. N.; Xu, W.; Hua, Z. Y. Chem. Phys. Lett. 2004, 397, 56.  doi: 10.1016/j.cplett.2004.07.115

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(8)
  • Abstract views(775)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return