Citation: Zhang Liuwei, Chen Qixian, Wang Jingyun. Advances in Reactive Oxygen Species Responsive Anti-cancer Prodrugs[J]. Acta Chimica Sinica, ;2020, 78(7): 642-656. doi: 10.6023/A20040116 shu

Advances in Reactive Oxygen Species Responsive Anti-cancer Prodrugs

  • Corresponding author: Chen Qixian, qixian@dlut.edu.cn Wang Jingyun, wangjingyun67@dlut.edu.cn
  • Received Date: 24 April 2020
    Available Online: 8 June 2020

    Fund Project: Talent Project of Revitalizing Liaoning XLYC1807184Project supported by the National Natural Science Foundation of China (No. 21878041) and Talent Project of Revitalizing Liaoning (XLYC1807184)National Natural Science Foundation of China 21878041

Figures(23)

  • Reactive oxygen species (ROS) are categorized as a class of instantaneous intermediate products of oxygen, which are usually produced by a single electron continuous reduction of O2. Examples include hydrogen peroxide (H2O2), superoxide anion (O2-), hydroxyl radical (HO·), hypochlorite radical (OCl-) and singlet oxygen (1O2). The endogenous ROS arise from three major resources:mitochondrial electron transport chain (Mito-ETC), endoplasmic reticulum (ER) and NADPH oxidase (NOX). The produced ROS play vital roles in physiological functions including modulation of functions of proteins, regulation of cell signaling, mediation of inflammation, and elimination of pathogens. However, the cumulative ROS level in vivo could elicit oxidative stress, which is implicated in a multitude of diseases including cancer, autoimmune diseases, inflammation, cardiovascular diseases, neurodegenerative diseases. This abnormal biochemical alteration in tumors has inspired researchers to exploit the relatively high levels of ROS for development of ROS-responsive prodrug systems. In recent years, ROS-responsive prodrug systems based on a spectrum of ROS-sensitive linkers have been designed and developed with aim of precision tumor therapy. Herein, in this review, we would like to illustrate ROS-sensitive linkers developed to date including arylboronic acid or ester, alkyl thioether or selenide, thioketal, peroxalate ester, aminoacrylate, thiazolidinone and α-ketoamide, and elucidate the underlying molecular oxidation mechanism. Furthermore, the design of ROS-responsive prodrugs based on these sensitive linkers and their applications in anti-cancer therapy were reviewed. Additionally, the existing problems and the future research perspectives of prodrug systems were also discussed.
  • 加载中
    1. [1]

      Nathan, C.; Ding, A. Cell 2010, 140, 951.  doi: 10.1016/j.cell.2010.03.008

    2. [2]

      D'Autreaux, B.; Toledano, M. B. Nat. Rev. Mol. Cell Biol. 2007, 8, 813.

    3. [3]

      Trachootham, D.; Alexandre, J.; Huang, P. Nat. Rev. Drug Discov. 2009, 8, 579.  doi: 10.1038/nrd2803

    4. [4]

      Schumacker, P. T. Cancer Cell 2015, 27, 156.  doi: 10.1016/j.ccell.2015.01.007

    5. [5]

      Brieger, K.; Schiavone, S.; Miller, F. J., Jr.; Krause, K. H. Swiss Med. Wkly. 2012, 142, w13659.

    6. [6]

      Costa, A.; Scholer-Dahirel, A.; Mechta-Grigoriou, F. Semin. Cancer Biol. 2014, 25, 23.  doi: 10.1016/j.semcancer.2013.12.007

    7. [7]

      Nathan, C.; Cunningham-Bussel, A. Nat. Rev. Immunol. 2013, 13, 349.  doi: 10.1038/nri3423

    8. [8]

      Martin, K. R.; Barrett, J. C. Hum. Exp. Toxicol. 2002, 21, 71.  doi: 10.1191/0960327102ht213oa

    9. [9]

      Ahsan, H.; Ali, A.; Ali, R. Clin. Exp. Immunol. 2003, 131, 398.  doi: 10.1046/j.1365-2249.2003.02104.x

    10. [10]

      Andersen, J. K. Nat. Med. 2004, 10, 18.  doi: 10.1038/nrn1434

    11. [11]

      Haigis, M. C.; Yankner, B. A. Mol. Cell 2010, 40, 333.  doi: 10.1016/j.molcel.2010.10.002

    12. [12]

      Kumar, S. V.; Saritha, G.; Fareedullah, M. Ann. Biol. Res. 2010, 1, 158.

    13. [13]

      Paravicini, T. M.; Touyz, R. M. Cardiovasc. Res. 2006, 71, 247.  doi: 10.1016/j.cardiores.2006.05.001

    14. [14]

      Szatrowski, T. P.; Nathan, C. F. Cancer Res. 1991, 51, 794.

    15. [15]

      Wellen, K. E.; Hotamisligil, G. S. J. Clin. Invest. 2005, 115, 1111.  doi: 10.1172/JCI25102

    16. [16]

      Boveris, A.; Alvarez, S.; Bustamante, J.; Valdez, L. Methods Enzymol. 2002, 349, 280.  doi: 10.1016/S0076-6879(02)49342-1

    17. [17]

      Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Nat. Rev. Mol. Cell Biol. 2007, 8, 722.  doi: 10.1038/nrm2240

    18. [18]

      Mueller, S. Biol. Med. 2000, 29, 410.

    19. [19]

      Stone, J. R.; Yang, S. Antioxid Redox Sign. 2006, 8, 243.  doi: 10.1089/ars.2006.8.243

    20. [20]

      Du, Z.; Zhang, Y.; Ye, J.; Xu, H.; Lang, M. Acta Chim. Sinica 2015, 73, 349.
       

    21. [21]

      Wu, C.; Xie, J.; Quan, J.; Zhu, L. Acta Chim. Sinica 2011, 69, 843.
       

    22. [22]

      Hou, J.; Li, K.; Qin, C.; Yu, X. Chin. J. Org. Chem. 2018, 38, 612.

    23. [23]

      Jiao, C.; Liu, Y.; Lu, W.; Zhang, P.; Wang, Y. Chin. J. Org. Chem. 2019, 39, 591.
       

    24. [24]

      Major Jourden, J. L.; Cohen, S. M. Angew. Chem. Int. Ed. 2010, 49, 6795.  doi: 10.1002/anie.201003819

    25. [25]

      Kuang, Y.; Balakrishnan, K.; Gandhi, V.; Peng, X. J. Am. Chem. Soc. 2011, 133, 19278.  doi: 10.1021/ja2073824

    26. [26]

      Chen, W.; Fan, H.; Balakrishnan, K.; Wang, Y.; Sun, H.; Fan, Y.; Gandhi, V.; Arnold, L. A.; Peng, X. J. Med. Chem. 2018, 61, 9132.

    27. [27]

      Chen, W.; Balakrishnan, K.; Kuang, Y.; Han, Y.; Fu, M.; Gandhi, V.; Peng, X. J. Med. Chem. 2014, 57, 4498.

    28. [28]

      Cao, S.; Wang, Y.; Peng, X. Chemistry 2012, 18, 3850.  doi: 10.1002/chem.201200075

    29. [29]

      Wang, Y.; Fan, H.; Balakrishnan, K.; Lin, Z.; Cao, S.; Chen, W.; Fan, Y.; Guthrie, Q. A.; Sun, H.; Teske, K. A.; Gandhi, V.; Arnold, L. A.; Peng, X. Eur J. Med. Chem. 2017, 133, 197.  doi: 10.1016/j.ejmech.2017.03.041

    30. [30]

      Chen, W.; Han, Y.; Peng, X. Chemistry 2014, 20, 7410.  doi: 10.1002/chem.201400090

    31. [31]

      Cao, S.; Wang, Y.; Peng, X. J. Org. Chem. 2014, 79, 501.  doi: 10.1021/jo401901x

    32. [32]

      Daum, S.; Reshetnikov, M. S. V.; Sisa, M.; Dumych, T.; Lootsik, M. D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann, M.; Sellner, L.; Mokhir, A. Angew. Chem. Int. Ed. 2017, 56, 15545.  doi: 10.1002/anie.201706585

    33. [33]

      Schikora, M.; Reznikov, A.; Chaykovskaya, L.; Sachinska, O.; Polyakova, L.; Mokhir, A. Bioorg. Med. Chem. Lett. 2015, 25, 3447.  doi: 10.1016/j.bmcl.2015.07.013

    34. [34]

      Marzenell, P.; Hagen, H.; Sellner, L.; Zenz, T.; Grinyte, R.; Pavlov, V.; Daum, S.; Mokhir, A. J. Med. Chem. 2013, 56, 6935.

    35. [35]

      Hagen, H.; Marzenell, P.; Jentzsch, E.; Wenz, F.; Veldwijk, M. R.; Mokhir, A. J. Med. Chem. 2012, 55, 924.

    36. [36]

      Daum, S.; Chekhun, V. F.; Todor, I. N.; Lukianova, N. Y.; Shvets, Y. V.; Sellner, L.; Putzker, K.; Lewis, J.; Zenz, T.; de Graaf, I. A.; Groothuis, G. M.; Casini, A.; Zozulia, O.; Hampel, F.; Mokhir, A. J. Med. Chem. 2015, 58, 2015.

    37. [37]

      Daum, S.; Babiy, S.; Konovalova, H.; Hofer, W.; Shtemenko, A.; Shtemenko, N.; Janko, C.; Alexiou, C.; Mokhir, A. J. Inorg. Biochem. 2018, 178, 9.  doi: 10.1016/j.jinorgbio.2017.08.038

    38. [38]

      Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Acta Chim. Sinica 2017, 75, 538.
       

    39. [39]

      Reshetnikov, V.; Daum, S.; Mokhir, A. Chemistry 2017, 23, 5678.  doi: 10.1002/chem.201701192

    40. [40]

      Reshetnikov, V.; Daum, S.; Janko, C.; Karawacka, W.; Tietze, R.; Alexiou, C.; Paryzhak, S.; Dumych, T.; Bilyy, R.; Tripal, P.; Schmid, B.; Palmisano, R.; Mokhir, A. Angew. Chem. Int. Ed. 2018, 57, 11943.  doi: 10.1002/anie.201805955

    41. [41]

      Reshetnikov, V.; Arkhypov, A.; Julakanti, P. R.; Mokhir, A. Dalton Trans. 2018, 47, 6679.  doi: 10.1039/C8DT01458B

    42. [42]

      Ai, Y.; Obianom, O. N.; Kuser, M.; Li, Y.; Shu, Y.; Xue, F. ACS Med. Chem. Lett. 2019, 10, 127.  doi: 10.1021/acsmedchemlett.8b00539

    43. [43]

      Bhagat, S. D.; Singh, U.; Mishra, R. K.; Srivastava, A. ChemMedChem 2018, 13, 2073.  doi: 10.1002/cmdc.201800367

    44. [44]

      Biswas, S.; Das, J.; Barman, S.; Rao Pinninti, B.; T, K. M.; Singh, N. D. P. ACS Appl. Mater. Inter. 2017, 9, 28180.  doi: 10.1021/acsami.7b05132

    45. [45]

      Kumar, R.; Han, J.; Lim, H. J.; Ren, W. X.; Lim, J. Y.; Kim, J. H.; Kim, J. S. J. Am. Chem. Soc. 2014, 136, 17836.  doi: 10.1021/ja510421q

    46. [46]

      Kim, E. J.; Bhuniya, S.; Lee, H.; Kim, H. M.; Cheong, C.; Maiti, S.; Hong, K. S.; Kim, J. S. J. Am. Chem. Soc. 2014, 136, 13888.  doi: 10.1021/ja5077684

    47. [47]

      Wang, L.; Xie, S.; Ma, L.; Chen, Y.; Lu, W. Eur. J. Med. Chem. 2016, 116, 84.  doi: 10.1016/j.ejmech.2016.03.063

    48. [48]

      Liu, H. W.; Hu, X. X.; Li, K.; Liu, Y.; Rong, Q.; Zhu, L.; Yuan, L.; Qu, F. L.; Zhang, X. B.; Tan, W. Chem. Sci. 2017, 8, 7689.  doi: 10.1039/C7SC03454G

    49. [49]

      Gao, X.; Cao, J.; Song, Y.; Shu, X.; Liu, J.; Sun, J. Z.; Liu, B.; Tang, B. Z. RSC Adv. 2018, 8, 10975.  doi: 10.1039/C8RA01185K

    50. [50]

      Matsushita, K.; Okuda, T.; Mori, S.; Konno, M.; Eguchi, H.; Asai, A.; Koseki, J.; Iwagami, Y.; Yamada, D.; Akita, H.; Asaoka, T.; Noda, T.; Kawamoto, K.; Gotoh, K.; Kobayashi, S.; Kasahara, Y.; Morihiro, K.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H.; Obika, S. ChemMedChem 2019, 14, 1384.  doi: 10.1002/cmdc.201900324

    51. [51]

      Peiro Cadahia, J.; Bondebjerg, J.; Hansen, C. A.; Previtali, V.; Hansen, A. E.; Andresen, T. L.; Clausen, M. H. J. Med. Chem. 2018, 61, 3503.

    52. [52]

      Previtali, V.; Petrovic, K.; Peiro Cadahia, J.; Troelsen, N. S.; Clausen, M. H. Bioorg. Med. Chem. 2020, 28, 115247.  doi: 10.1016/j.bmc.2019.115247

    53. [53]

      Xu, X.; Liu, K.; Jiao, B.; Luo, K.; Ren, J.; Zhang, G.; Yu, Q.; Gan, Z. J. Control. Release 2020.

    54. [54]

      Li, M.; Li, S.; Chen, H.; Hu, R.; Liu, L.; Lv, F.; Wang, S. ACS Appl. Mater. Inter. 2016, 8, 42.  doi: 10.1021/acsami.5b11846

    55. [55]

      Pei, Y.; Li, M.; Hou, Y.; Hu, Y.; Chu, G.; Dai, L.; Li, K.; Xing, Y.; Tao, B.; Yu, Y.; Xue, C.; He, Y.; Luo, Z.; Cai, K. Nanoscale 2018, 10, 11418.  doi: 10.1039/C8NR02358A

    56. [56]

      Luan, T.; Cheng, L.; Cheng, J.; Zhang, X.; Cao, Y.; Zhang, X.; Cui, H.; Zhao, G. ACS Appl. Mater. Inter. 2019, 11, 25654.  doi: 10.1021/acsami.9b01433

    57. [57]

      Lin, M.; Guo, W.; Zhang, Z.; Zhou, Y.; Chen, J.; Wang, T.; Zhong, X.; Lu, Y.; Yang, Q.; Wei, Q.; Han, M.; Xu, D.; Gao, J. Mol. Pharm. 2020, 17, 499.

    58. [58]

      Luo, C. Q.; Zhou, Y. X.; Zhou, T. J.; Xing, L.; Cui, P. F.; Sun, M.; Jin, L.; Lu, N.; Jiang, H. L. J. Control. Release 2018, 274, 56.  doi: 10.1016/j.jconrel.2018.01.034

    59. [59]

      Dong, C.; Zhou, Q.; Xiang, J.; Liu, F.; Zhou, Z.; Shen, Y. J. Control. Release 2020, 321, 529.  doi: 10.1016/j.jconrel.2020.02.038

    60. [60]

      Gao, F.; Wang, F.; Nie, X.; Zhang, Z.; Chen, G.; Xia, L.; Wang, L. H.; Wang, C. H.; Hao, Z. Y.; Zhang, W. J.; Hong, C. Y.; You, Y. Z. New J. Chem. 2020, 44, 3478.  doi: 10.1039/C9NJ05860E

    61. [61]

      Wang, M.; Sun, S.; Neufeld, C. I.; Perez-Ramirez, B.; Xu, Q. Angew. Chem. Int. Ed. 2014, 53, 13444.  doi: 10.1002/anie.201407234

    62. [62]

      Li, M.; Zhao, L.; Zhang, T.; Shu, Y.; He, Z.; Ma, Y.; Liu, D.; Wang, Y. Acta Pharm. Sin. B 2019, 9, 421.  doi: 10.1016/j.apsb.2018.08.008

    63. [63]

      Luo, C.; Sun, J.; Liu, D.; Sun, B.; Miao, L.; Musetti, S.; Li, J.; Han, X.; Du, Y.; Li, L.; Huang, L.; He, Z. Nano Lett. 2017, 16, 5401.

    64. [64]

      Sun, B.; Chen, Y.; Yu, H.; Wang, C.; Zhang, X.; Zhao, H.; Chen, Q.; He, Z.; Luo, C.; Sun, J. Acta Biomater. 2019, 92, 219.  doi: 10.1016/j.actbio.2019.05.008

    65. [65]

      Luo, C.; Sun, B.; Wang, C.; Zhang, X.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H.; Sun, M.; Li, Z.; Zhang, H.; Kan, Q.; Wang, Y.; He, Z.; Sun, J. J. Control. Release 2019, 302, 79.  doi: 10.1016/j.jconrel.2019.04.001

    66. [66]

      Wang, K.; Yang, B.; Ye, H.; Zhang, X.; Song, H.; Wang, X.; Li, N.; Wei, L.; Wang, Y.; Zhang, H.; Kan, Q.; He, Z.; Wang, D.; Sun, J. ACS Appl. Mater. Inter. 2019, 11, 18914.  doi: 10.1021/acsami.9b03056

    67. [67]

      Zhang, D.; Yang, J.; Guan, J.; Yang, B.; Zhang, S.; Sun, M.; Yang, R.; Zhang, T.; Zhang, R.; Kan, Q.; Zhang, H.; He, Z.; Shang, L.; Sun, J. Biomater. Sci. 2018, 6, 2360.  doi: 10.1039/C8BM00548F

    68. [68]

      Yang, J.; Lv, Q.; Wei, W.; Yang, Z.; Dong, J.; Zhang, R.; Kan, Q.; He, Z.; Xu, Y. Drug Deliv. 2018, 25, 807.  doi: 10.1080/10717544.2018.1451935

    69. [69]

      Yang, B.; Wang, K.; Zhang, D.; Ji, B.; Zhao, D.; Wang, X.; Zhang, H.; Kan, Q.; He, Z.; Sun, J. RSC Adv. 2019, 9, 9260.  doi: 10.1039/C9RA01230C

    70. [70]

      Xu, C.; Sun, Y.; Qi, Y.; Yu, Y.; He, Y.; Hu, M.; Hu, Q.; Wu, T.; Zhang, D.; Shang, L.; Deng, H.; Zhang, Z. J. Control. Release 2018, 284, 224.  doi: 10.1016/j.jconrel.2018.06.027

    71. [71]

      Wang, J.; Sun, X.; Mao, W.; Sun, W.; Tang, J.; Sui, M.; Shen, Y.; Gu, Z. Adv. Mater. 2013, 25, 3670.  doi: 10.1002/adma.201300929

    72. [72]

      Sharma, A.; Lee, M. G.; Won, M.; Koo, S.; Arambula, J. F.; Sessler, J. L.; Chi, S. G.; Kim, J. S. J. Am. Chem. Soc. 2019, 141, 15611.  doi: 10.1021/jacs.9b07171

    73. [73]

      Yin, W.; Ke, W.; Lu, N.; Wang, Y.; Japir, A.; Mohammed, F.; Wang, Y.; Pan, Y.; Ge, Z. Biomacromolecules 2020, 21, 921.  doi: 10.1021/acs.biomac.9b01578

    74. [74]

      Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. J Am. Chem. Soc. 2010, 132, 442.  doi: 10.1021/ja908124g

    75. [75]

      Cao, W.; Gu, Y.; Li, T.; Xu, H. Chem. Commun. (Camb) 2015, 51, 7069.  doi: 10.1039/C5CC01779C

    76. [76]

      Liu, J.; Pang, Y.; Zhu, Z.; Wang, D.; Li, C.; Huang, W.; Zhu, X.; Yan, D. Biomacromolecules 2013, 14, 1627.  doi: 10.1021/bm4002574

    77. [77]

      Ma, N.; Li, Y.; Ren, H.; Xu, H.; Li, Z.; Zhang, X. Polym. Chem. 2010, 1, 1069.

    78. [78]

      Ma, N.; Xu, H.; An, L.; Li, J.; Sun, Z.; Zhang, X. Langmuir 2011, 27, 5874.  doi: 10.1021/la2009682

    79. [79]

      Tian, Y.; Zheng, J.; Tang, X.; Ren, Q.; Wang, Y.; Yang, W. Part. Part. Syst. Charact. 2015, 32, 547.  doi: 10.1002/ppsc.201400244

    80. [80]

      Li, T.; Yi, Y.; Xu, H. Acta Chim. Sinica 2014, 72, 1079.
       

    81. [81]

      Pan, Z.; Zhang, J.; Ji, K.; Chittavong, V.; Ji, X.; Wang, B. Org. Lett. 2018, 20, 8.  doi: 10.1021/acs.orglett.7b02775

    82. [82]

      Yang, B.; Wang, K.; Zhang, D.; Sun, B.; Ji, B.; Wei, L.; Li, Z.; Wang, M.; Zhang, X.; Zhang, H.; Kan, Q.; Luo, C.; Wang, Y.; He, Z.; Sun, J. Biomater. Sci. 2018, 6, 2965.  doi: 10.1039/C8BM00899J

    83. [83]

      Li, Y.; Li, Y.; Ji, W.; Lu, Z.; Liu, L.; Shi, Y.; Ma, G.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 4164.  doi: 10.1021/jacs.8b01641

    84. [84]

      Ganguly, N.; Barik, S. Synthesis 2009, 2009, 1393.  doi: 10.1055/s-0028-1088023

    85. [85]

      Ling, X.; Zhang, S.; Shao, P.; Wang, P.; Ma, X.; Bai, M. Tetrahedron Lett. 2015, 56, 5242.  doi: 10.1016/j.tetlet.2015.07.059

    86. [86]

      Wilson, D. S.; Dalmasso, G.; Wang, L.; Sitaraman, S. V.; Merlin, D.; Murthy, N. Nat. Mater. 2010, 9, 923.  doi: 10.1038/nmat2859

    87. [87]

      Xu, C.; Song, R.; Lu, P.; Chen, J.; Zhou, Y.; Shen, G.; Jiang, M.; Zhang, W. Int. J. Nanomed. 2020, 15, 65.  doi: 10.2147/IJN.S230237

    88. [88]

      Li, S.; Xie, A.; Li, H.; Zou, X.; Zhang, Q. J. Control. Release 2019, 316, 66.  doi: 10.1016/j.jconrel.2019.10.054

    89. [89]

      Xu, L.; Yang, Y.; Zhao, M.; Gao, W.; Zhang, H.; Li, S.; He, B.; Pu, Y. J. Mater. Chem. B 2018, 6, 1076.  doi: 10.1039/C7TB02479G

    90. [90]

      Wang, Y.; Zhang, Y.; Ru, Z.; Song, W.; Chen, L.; Ma, H.; Sun, L. J. Nanobiotechnol. 2019, 17, 91.  doi: 10.1186/s12951-019-0521-z

    91. [91]

      Zhao, Z.; Wang, W.; Li, C.; Zhang, Y.; Yu, T.; Wu, R.; Zhao, J.; Liu, Z.; Liu, J.; Yu, H. Adv. Funct. Mater. 2019, 29, 1909013.

    92. [92]

      Zhou, F.; Feng, B.; Wang, T.; Wang, D.; Cui, Z.; Wang, S.; Ding, C.; Zhang, Z.; Liu, J.; Yu, H.; Li, Y. Adv. Funct. Mater. 2017, 27, 1703674.  doi: 10.1002/adfm.201703674

    93. [93]

      Yuan, Y.; Liu, J.; Liu, B. Angew. Chem. Int. Ed. 2014, 53, 7163.  doi: 10.1002/anie.201402189

    94. [94]

      Xu, X.; Saw, P. E.; Tao, W.; Li, Y.; Ji, X.; Bhasin, S.; Liu, Y.; Ayyash, D.; Rasmussen, J.; Huo, M.; Shi, J.; Farokhzad, O. C. Adv. Mater. 2017, 29, 1700141.  doi: 10.1002/adma.201700141

    95. [95]

      Lamb, B. M.; Barbas, C. F., 3rd Chem. Commun. (Camb) 2015, 51, 3196.  doi: 10.1039/C4CC09040C

    96. [96]

      Wang, G.; Zhou, Z.; Zhao, Z.; Li, Q.; Wu, Y.; Yan, S.; Shen, Y.; Huang, P. ACS Nano 2020, 14, 4890.  doi: 10.1021/acsnano.0c00974

    97. [97]

      Ke, W.; Lu, N.; Japir, A.; Zhou, Q.; Xi, L.; Wang, Y.; Dutta, D.; Zhou, M.; Pan, Y.; Ge, Z. J. Control. Release 2020, 318, 67.  doi: 10.1016/j.jconrel.2019.12.012

    98. [98]

      Yin, W.; Ke, W.; Chen, W.; Xi, L.; Zhou, Q.; Mukerabigwi, J. F.; Ge, Z. Biomaterials 2019, 195, 63.  doi: 10.1016/j.biomaterials.2018.12.032

    99. [99]

      Ke, W.; Li, J.; Mohammed, F.; Wang, Y.; Tou, K.; Liu, X.; Wen, P.; Kinoh, H.; Anraku, Y.; Chen, H.; Kataoka, K.; Ge, Z. ACS Nano 2019, 13, 2357.

    100. [100]

      Wang, S.; Yu, G.; Wang, Z.; Jacobson, O.; Lin, L. S.; Yang, W.; Deng, H.; He, Z.; Liu, Y.; Chen, Z. Y.; Chen, X. Angew. Chem. Int. Ed. 2019, 58, 14758.  doi: 10.1002/anie.201908997

    101. [101]

      Han, K.; Zhu, J. Y.; Wang, S. B.; Li, Z. H.; Cheng, S. X.; Zhang, X. Z. J. Mater. Chem. B 2015, 3, 8065.  doi: 10.1039/C5TB01659B

    102. [102]

      Pei, P.; Sun, C.; Tao, W.; Li, J.; Yang, X.; Wang, J. Biomaterials 2019, 188, 74.  doi: 10.1016/j.biomaterials.2018.10.010

    103. [103]

      Phua, S. Z. F.; Xue, C.; Lim, W. Q.; Yang, G.; Chen, H.; Zhang, Y.; Wijaya, C. F.; Luo, Z.; Zhao, Y. Chem. Mater. 2019, 31, 3349.  doi: 10.1021/acs.chemmater.9b00439

    104. [104]

      Xia, X.; Yang, X.; Huang, P.; Yan, D. ACS Appl. Mater. Inter. 2020, 12, 18301.  doi: 10.1021/acsami.0c00650

    105. [105]

      Shi, S.; Zhang, L.; Zhu, M.; Wan, G.; Li, C.; Zhang, J.; Wang, Y.; Wang, Y. ACS Appl. Mater. Inter. 2018, 10, 29260.  doi: 10.1021/acsami.8b08269

    106. [106]

      Ling, X.; Zhang, S.; Liu, Y.; Bai, M. J. Biomed. Opt. 2018, 23, 1.

    107. [107]

      Liu, L. H.; Qiu, W. X.; Li, B.; Zhang, C.; Sun, L. F.; Wan, S. S.; Rong, L.; Zhang, X. Z. Adv. Funct. Mater. 2016, 26, 6257.  doi: 10.1002/adfm.201602541

    108. [108]

      Li, J.; Li, Y.; Wang, Y.; Ke, W.; Chen, W.; Wang, W.; Ge, Z. Nano Lett. 2017, 17, 6983.  doi: 10.1021/acs.nanolett.7b03531

    109. [109]

      Kwon, J.; Kim, J.; Park, S.; Khang, G.; Kang, P. M.; Lee, D. Biomacromolecules 2013, 14, 1618.  doi: 10.1021/bm400256h

    110. [110]

      Qiao, Z.; Liu, H. Y.; Zha, J. C.; Mao, X. X.; Yin, J. Polym. Chem. 2019, 10, 4305.  doi: 10.1039/C9PY00892F

    111. [111]

      Berwin Singh, S. V.; Jung, E.; Noh, J.; Yoo, D.; Kang, C.; Hyeon, H.; Kim, G. W.; Khang, G.; Lee, D. Nanomedicine 2019, 16, 45.  doi: 10.1016/j.nano.2018.11.003

    112. [112]

      Höcherl, A.; Jäger, E.; Jäger, A.; Hrubý, M.; Konefał, R.; Janoušková, O.; Spěváček, J.; Jiang, Y.; Schmidt, P. W.; Lodge, T. P.; Štěpánek, P. Polym. Chem. 2017, 8, 1999.  doi: 10.1039/C7PY00270J

    113. [113]

      Ou, K.; Kang, Y.; Chen, L.; Zhang, X.; Chen, X.; Zheng, Y.; Wu, J.; Guan, S. Biomater. Sci. 2019, 7, 2491.  doi: 10.1039/C9BM00344D

    114. [114]

      Wang, S.; Wang, Z.; Yu, G.; Zhou, Z.; Jacobson, O.; Liu, Y.; Ma, Y.; Zhang, F.; Chen, Z.; Chen, X. Adv. Sci. 2019, 6, 1700141.

    115. [115]

      Li, J.; Ke, W.; Wang, L.; Huang, M.; Yin, W.; Zhang, P.; Chen, Q.; Ge, Z. J. Control. Release 2016, 225, 64.  doi: 10.1016/j.jconrel.2016.01.029

    116. [116]

      Dai, L.; Li, X.; Duan, X.; Li, M.; Niu, P.; Xu, H.; Cai, K.; Yang, H. Adv. Sci. 2019, 6, 1801807.  doi: 10.1002/advs.201801807

    117. [117]

      Bio, M.; Nkepang, G.; You, Y. Chem. Commun. (Camb) 2012, 48, 6517.  doi: 10.1039/c2cc32373g

    118. [118]

      Hossion, A. M.; Bio, M.; Nkepang, G.; Awuah, S. G.; You, Y. ACS Med. Chem. Lett. 2013, 4, 124.  doi: 10.1021/ml3003617

    119. [119]

      Bio, M.; Rajaputra, P.; Nkepang, G.; You, Y. J. Med. Chem. 2014, 57, 3401.

    120. [120]

      Rajaputra, P.; Bio, M.; Nkepang, G.; Thapa, P.; Woo, S.; You, Y. Bioorg. Med. Chem. 2016, 24, 1540.  doi: 10.1016/j.bmc.2016.02.025

    121. [121]

      Thapa, P.; Li, M.; Bio, M.; Rajaputra, P.; Nkepang, G.; Sun, Y.; Woo, S.; You, Y. J. Med. Chem. 2016, 59, 3204.

    122. [122]

      Bio, M.; Rajaputra, P.; Lim, I.; Thapa, P.; Tienabeso, B.; Hurst, R. E.; You, Y. Chem. Commun. (Camb) 2017, 53, 1884.  doi: 10.1039/C6CC09994G

    123. [123]

      Li, M.; Thapa, P.; Rajaputra, P.; Bio, M.; Peer, C. J.; Figg, W. D.; You, Y.; Woo, S. J. Pharmacokinet. Pharmacodyn. 2017, 44, 521.  doi: 10.1007/s10928-017-9543-z

    124. [124]

      Bio, M.; Rajaputra, P.; Nkepang, G.; Awuah, S. G.; Hossion, A. M.; You, Y. J. Med. Chem. 2013, 56, 3936.

    125. [125]

      Nkepang, G.; Bio, M.; Rajaputra, P.; Awuah, S. G.; You, Y. Bioconjug. Chem. 2014, 25, 2175.  doi: 10.1021/bc500376j

    126. [126]

      Thapa, P.; Li, M.; Karki, R.; Bio, M.; Rajaputra, P.; Nkepang, G.; Woo, S.; You, Y. ACS Omega 2017, 2, 6349.  doi: 10.1021/acsomega.7b01105

    127. [127]

      Perez, C.; Monserrat, J. P.; Chen, Y.; Cohen, S. M. Chem. Commun. (Camb) 2015, 51, 7116.  doi: 10.1039/C4CC09921D

    128. [128]

      Andersen, N. S.; Peiro Cadahia, J.; Previtali, V.; Bondebjerg, J.; Hansen, C. A.; Hansen, A. E.; Andresen, T. L.; Clausen, M. H. Eur. J. Med. Chem. 2018, 156, 738.  doi: 10.1016/j.ejmech.2018.07.045

    129. [129]

      Meng, T.; Han, J.; Zhang, P.; Hu, J.; Fu, J.; Yin, J. Chem. Sci. 2019, 10, 7156.  doi: 10.1039/C9SC00910H

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(178)
  • Abstract views(4396)
  • HTML views(1561)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return