Citation: Chen Yougen, Ding Yuansheng. Recent Progress of Organocatalyzed Group Transfer Polymerization[J]. Acta Chimica Sinica, ;2020, 78(8): 733-745. doi: 10.6023/A20040115 shu

Recent Progress of Organocatalyzed Group Transfer Polymerization

  • Corresponding author: Chen Yougen, chenyg@szu.edu.cn
  • Received Date: 24 April 2020
    Available Online: 15 June 2020

    Fund Project: Shenzhen Science and Technology Research Grant JCYJ20190808154011907Project supported by the National Natural Science Foundation of China (No. 21604057), Natural Science Foundation of SZU (No. 000215), Shenzhen Science and Technology Research Grant (No. JCYJ20190808154011907)Natural Science Foundation of SZU 000215the National Natural Science Foundation of China 21604057

Figures(19)

  • Group transfer polymerization (GTP) is a living polymerization method for acrylic-derived monomers developed by DuPont after living anionic polymerization in the 1980s. The acrylic-derived monomers mainly include acrylate, methacrylate, acrylamide and acrylonitrile. The elementary initiation and propagation reactions in GTP are all rooted in the Mukaiyama-Michael addition reaction. Therefore, in principle both base and acid can sever as the catalyst for GTP. Before the small molecular organocatalyst is applied to the polymerization method, the normally used base has been a soluble ionic compound containing a sterically hindered cation, in which the nucleophilic anion acts as the true catalyst. The normally used acid has been a metal or transition metal compound having Lewis acidity. Since 2007, small organic bases and acids have been gradually used to catalyze GTP, and this type of polymerization has been named as organocatalyzed GTP. Compared with the conventional one, organocatalyzed GTP has made a great improvement in the aspects of molecular weight and molecular weight distribution control of acrylic polymers, scope of polymerizable monomers, topological design of polymer, etc. This review mainly focuses on the author's recent work and will be discussed from four aspects: GTP using organic strong base, GTP using organic strong acid, a novel hydrosilane-based GTP, and polymerization mechanism.
  • 加载中
    1. [1]

      Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.  doi: 10.1021/ja000092s

    2. [2]

      MacMillan, D. W. C. Nature 2008, 455, 304.  doi: 10.1038/nature07367

    3. [3]

      Xiao, Y.; Wang, Y.; Zhou, Z. Chinese J. Org. Chem. 2019, 39, 2203.  doi: 10.6023/cjoc201703070

    4. [4]

      Wang, L.; Lin, G.; Zhao, M.; Liu, D.; Jin, Y. Chinese J. Org. Chem. 2018, 38, 642 (in Chinese).
       

    5. [5]

      Ma, S.; Zhong, Y.; Wang, S.; Xu, Z.; Chang, M.; Wang, R. Acta Chim. Sinica 2014, 72, 825 (in Chinese).
       

    6. [6]

      Zhao, H.; Meng, W.; Yang, Z.; Tian, T.; Sheng, Z.; Li, H.; Song, X.; Zhang, Y.; Yang, S.; Li, B. Chinese J. Chem. 2014, 32, 417.  doi: 10.1002/cjoc.201400166

    7. [7]

      Nederberg, F.; Connor, E. F.; Möller, F.; Glauser, M. T.; Hedrick, J. L. Angew. Chem. Int. Ed. 2001, 40, 2712.  doi: 10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z

    8. [8]

      Misaka, H.; Kakuchi, R.; Zhang, C. H.; Sakai, R.; Satoh, T.; Kakuchi, T. Macromolecules 2009, 42, 5091.  doi: 10.1021/ma900712p

    9. [9]

      Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2005, 127, 13798.  doi: 10.1021/ja0543346

    10. [10]

      Miyake, G. M.; Chen, E. Y.-X. Macromolecules 2011, 44, 4116.  doi: 10.1021/ma2007199

    11. [11]

      Sanda, F.; Sanada, H.; Shibasaki, Y.; Endo, T. Macromolecules 2002, 35, 680.  doi: 10.1021/ma011341f

    12. [12]

      Persson, P. V.; Schroder, J.; Wickholm, K.; Hedenstrom, E.; Iversen, T. Macromolecules 2004, 37, 5889.  doi: 10.1021/ma049562j

    13. [13]

      Oledzka, E.; Narine, S. S. J. Appl. Polym. Sci. 2011, 119, 1873.  doi: 10.1002/app.32897

    14. [14]

      Makiguchi, K.; Satoh, T.; Kakuchi, T. Macromolecules 2011, 44, 1999.  doi: 10.1021/ma200043x

    15. [15]

      Gazeau-Bureau, S.; Delcroix, D.; Martin-Vaca, B.; Bonrissou, D.; Navarro, C.; Magnet, S. Macromolecules 2008, 41, 3782.  doi: 10.1021/ma800626q

    16. [16]

      Bourissou, D.; Martin-Vaca, B.; Dumitrescu, A.; Graullier, M.; Lacombe, F. Macromolecules 2005, 38, 9993.  doi: 10.1021/ma051646k

    17. [17]

      Kadota, J.; Pavlović, D.; Desvergne, J.; Bibal, B.; Peruch, F.; Deffieux, A. Macromolecules 2010, 43, 8874.  doi: 10.1021/ma101688d

    18. [18]

      Helou, M.; Miserque, O.; Brusson, J.; Carpentier, J.; Guillaume, S. M. Chem. Eur. J. 2010, 16, 13805.  doi: 10.1002/chem.201001111

    19. [19]

      Connor, E. F.; Nyce, G. W.; Myers, M.; Mock, A.; Hedrick, J. L. J. Am. Chem. Soc. 2002, 124, 914.  doi: 10.1021/ja0173324

    20. [20]

      Nyce, G. W.; Glauser, T.; Connor, E. F.; Mock, A.; Waymouth, R. M.; Hedrick. J. L. J. Am. Chem. Soc. 2003, 125, 3046.  doi: 10.1021/ja021084+

    21. [21]

      Coulembier, O.; Dove, A. P.; Pratt, R. C.; Sentman, A. C.; Culkin, D. A.; Mespouille, L.; Dubois, P.; Waymouth, R. M.; Hedrick, J. L. Angew. Chem. Int. Ed. 2005, 44, 4964.  doi: 10.1002/anie.200500723

    22. [22]

      Csihony, S.; Culkin, D. A.; Sentman, A. C.; Dove, A. P.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2005, 127, 9079.  doi: 10.1021/ja050909n

    23. [23]

      Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G. Macromolecules 2007, 40, 4154.  doi: 10.1021/ma070316s

    24. [24]

      Nederberg, F.; Lohmeijer, B. G. G.; Leibfarth, F.; Pratt, R. C.; Choi, J.; Dove, A. P.; Waymouth, R. M.; Hedrick, J. L. Biomacromolecules 2007, 8, 153.  doi: 10.1021/bm060795n

    25. [25]

      Lohmeijer, B. G. G.; Dubois, G.; Leibfarth, F.; Pratt, R. C.; Nederberg, F.; Nelson, A.; Waymouth, R. M.; Wade, C. G.; Hedrick, J. L. Org. Lett. 2006, 8, 4683.  doi: 10.1021/ol0614166

    26. [26]

      Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G. Macromolecules 2007, 40, 4154.  doi: 10.1021/ma070316s

    27. [27]

      Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. J. Am. Chem. Soc. 2007, 129, 12610.  doi: 10.1021/ja074131c

    28. [28]

      Webster, O. W.; Hertler, W. R.; Sogah, D. Y.; Farnham, W. B.; RajanBabu, T. V. J. Am. Chem. Soc. 1983, 105, 5706.  doi: 10.1021/ja00355a039

    29. [29]

      Webster, O. W. Adv. Polym. Sci. 2004, 167, 1.

    30. [30]

      Schubert, W.; Bandermann, F. Makromol. Chem. 1989, 190, 2161.  doi: 10.1002/macp.1989.021900916

    31. [31]

      Schubert, W.; Sitz, H. D.; Bandermann, F. Makromol. Chem. 1989, 190, 2193.  doi: 10.1002/macp.1989.021900919

    32. [32]

      Sogah, D. Y.; Hertler, W. R.; Webster, O. W.; Cohen, G. M. Macromolecules 1987, 20, 1473.  doi: 10.1021/ma00173a006

    33. [33]

      Schubert, W.; Bandermann, F. Makromol. Chem. 1989, 190, 2721.  doi: 10.1002/macp.1989.021901106

    34. [34]

      Hertler, W. R.; Sogah, D. Y.; Webster, O. W. Macromolecules 1984, 17, 1415.  doi: 10.1021/ma00137a021

    35. [35]

      Hellstern, A. M.; DeSimone, J. M.; McGrath, J. E. Polym. Prepr. 1988, 29, 342.

    36. [36]

      Dicker, I. B.; Cohen, G. M.; Farnham, W. B.; Hertler, W. R.; Laganis, E. D.; Sogah, D. Y. Macromolecules 1990, 23, 4034.  doi: 10.1021/ma00220a002

    37. [37]

      Patrickios, C. S.; Hertler, W. R.; Abbott, N. L.; Hatton, T. A. Macromolecules 1994, 27, 930.  doi: 10.1021/ma00082a008

    38. [38]

      Eggert, M.; Freitag, R. J. Polym. Sci. Part A: Polym. Chem. 1994, 32, 803.

    39. [39]

      Ute, K.; Tarao, T.; Hongo, S.; Ohnuma, K.; Hatada, K.; Kitayama, T. Polym. J. 1999, 31, 177.  doi: 10.1295/polymj.31.177

    40. [40]

      Ute, K.; Ohnuma, H.; Shimizu, I.; Kitayama, T. Polym. J. 2006, 38, 999.  doi: 10.1295/polymj.PJ2006041

    41. [41]

      Dicker, I. B. Polym. Prepr. 1988, 29, 114.

    42. [42]

      Zhuang, R.; Müller, A. H. E. Macromol. Symp. 1994, 85, 379.  doi: 10.1002/masy.19940850128

    43. [43]

      Zhuang, R.; Müller, A. H. E. Macromolecules 1995, 28, 8035.  doi: 10.1021/ma00128a010

    44. [44]

      Zhuang, R.; Müller, A. H. E. Macromolecules 1995, 28, 8043.  doi: 10.1021/ma00128a011

    45. [45]

      Ute, K.; Tarao, T.; Hatada, K. Polymer 1997, 44, 7869.

    46. [46]

      Ute, K.; Tarao, T.; Kitayama, T. Polym. J. 2005, 37, 578.  doi: 10.1295/polymj.37.578

    47. [47]

      White, D.; Matyjaszewski, K. Polym. Prepr. 1995, 36, 286.

    48. [48]

      Fuchise, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Polym. Chem. 2013, 4, 4278.  doi: 10.1039/c3py00278k

    49. [49]

      Raynaud, J.; Ciolino, A.; Baceiredo, A.; Destarac, M.; Bonnette, F.; Kato, T.; Gnanou, Y.; Taton, D. Angew. Chem. Int. Ed. 2008, 47, 5390.  doi: 10.1002/anie.200800490

    50. [50]

      Scholten, M. D.; Hedrick, J. L.; Waymouth, R. M. Macromolecules 2008, 41, 7399.  doi: 10.1021/ma801281q

    51. [51]

      Raynaud, J.; Liu, N.; Gnanou, Y.; Taton, D. Macromolecules 2010, 43, 8853.  doi: 10.1021/ma101478p

    52. [52]

      Raynaud, J.; Liu, N.; Fèvre, M.; Gnanou, Y.; Taton, D. Polym. Chem. 2011, 2, 1706.  doi: 10.1039/c1py00077b

    53. [53]

      Scholten, M. D.; Hedrick, J. L.; Waymouth, R. M. Polym. Prepr. 2007, 48, 167.

    54. [54]

      Raynaud, J.; Gnanou, Y.; Taton, D. Macromolecules 2009, 42, 5996.  doi: 10.1021/ma900679p

    55. [55]

      Raynaud, J.; Gnanou, Y.; Taton, D. PMSE Prepr. 2009, 101, 1771.

    56. [56]

      Zhang, Y.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2012, 51, 2465.  doi: 10.1002/anie.201108019

    57. [57]

      Fèvre, M.; Vignolle, J.; Heroguez, V.; Taton, D. Macromolecules 2012, 45, 7711.  doi: 10.1021/ma301412z

    58. [58]

      Zhang, Y.; Chen, E. Y.-X. Macromolecules 2008, 41, 36.  doi: 10.1021/ma702015w

    59. [59]

      Zhang, Y.; Chen, E. Y.-X. Macromolecules 2008, 41, 6353.  doi: 10.1021/ma801125y

    60. [60]

      Miyake, G. M.; Zhang, Y.; Chen, E. Y.-X. Macromolecules 2010, 43, 4902.  doi: 10.1021/ma100615t

    61. [61]

      Zhang, Y.; Gustafson, O.; Chen, E. Y-X. J. Am. Chem. Soc. 2011, 133, 13674.  doi: 10.1021/ja2053573

    62. [62]

      Chen, E. Y.-X. Chem. Rev. 2009, 109, 5157.  doi: 10.1021/cr9000258

    63. [63]

      Zhang, Y.; Lay, F.; García-García, P.; List, B. Chem. Eur. J. 2010, 16, 10462.  doi: 10.1002/chem.201000961

    64. [64]

      Kakuchi, T.; Chen, Y.-G.; Kitakado, J.; Mori, K.; Fuchise, K.; Satoh, T. Macromolecules 2011, 44, 4641.  doi: 10.1021/ma200720p

    65. [65]

      Chen, Y.-G.; Takada, K.; Kubota, N.; Eric, O.-T.; Ito, T.; Isono, T.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 1830.  doi: 10.1039/C4PY01564A

    66. [66]

      Eric, O.-T.; Chen, Y.-G.; Takada, K.; Sato, S.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 7841.  doi: 10.1039/C5PY01112D

    67. [67]

      Chen, Y.-G.; Fuchise, K.; Kawaguchi, S.; Satoh, T.; Kakuchi, T. Macromolecules 2011, 44, 9091.  doi: 10.1021/ma202103d

    68. [68]

      Hsu, J.-C.; Chen, Y.-G.; Kakuchi, T.; Chen, W.-C. Macromolecules 2011, 44, 5168.  doi: 10.1021/ma2006377

    69. [69]

      Kikuchi, S.; Chen, Y.-G.; Fuchise, K.; Takada, K.; Kitakado, J.; Sato, S.; Satoh, T.; Kakuchi, T. Polym. Chem. 2014, 5, 4701.  doi: 10.1039/C4PY00290C

    70. [70]

      Kakuchi, R.; Chiba, K.; Fuchise, K.; Sakai, R.; Satoh, T.; Kakuchi, T. Macromolecules 2009, 42, 8747.  doi: 10.1021/ma902006d

    71. [71]

      Chen, Y.-G.; Takada, K.; Fuchise, K.; Satoh, T.; Kakuchi, T. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3277.  doi: 10.1002/pola.26123

    72. [72]

      Takada, K.; Fuchise, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3560.  doi: 10.1002/pola.26140

    73. [73]

      Takada, K.; Ito, T.; Kitano, K.; Tuschida, S.; Takagi, Y.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Macromolecules 2015, 48, 511.  doi: 10.1021/ma502298v

    74. [74]

      Takada, K.; Fuchise, K.; Kubota, N.; Ito, T.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Macromolecules 2014, 47, 5514.  doi: 10.1021/ma501106e

    75. [75]

      Fuchise, K.; Sakai, R.; Satoh, T.; Sato, S.; Narumi, A.; Kawaguchi, S.; Kakuchi, T. Macromolecules 2010, 43, 5589.  doi: 10.1021/ma1005765

    76. [76]

      Fuchise, K.; Chen, Y.-G.; Takada, K.; Satoh, T.; Kakuchi, T. Macromol. Chem. Phys. 2012, 213, 1604.  doi: 10.1002/macp.201200146

    77. [77]

      Kikuchi, S.; Chen, Y.-G.; Kitano, K.; Takada, K.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 6845.  doi: 10.1039/C5PY01104C

    78. [78]

      Kikuchi, S.; Chen, Y.-G.; Ichinohe, E.; Sato, S.; Duan, Q.; Shen, X.-D.; Kakuchi, T. Macromolecules 2016, 49, 4828.  doi: 10.1021/acs.macromol.6b01075

    79. [79]

      Fuchise, K.; Tsuchida, S.; Takada, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. ACS Macro. Lett. 2014, 3, 1015.  doi: 10.1021/mz5004689

    80. [80]

      Chen, Y.-G.; Kitano, K.; Tsuchida, S.; Kikuchi, S.; Takada, K.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 3502.  doi: 10.1039/C5PY00294J

    81. [81]

      Kikuchi, S.; Chen, Y.-G.; Kitano, K.; Satoh, T.; Kakuchi, T. Macromolecules 2016, 49, 3049.  doi: 10.1021/acs.macromol.6b00190

    82. [82]

      Chen, Y.-G.; Jia, Q.; Ding, Y., ; Sato, S.; Xu, L.; Zang, C.; , Shen, X.; Kakuchi, T. Macromolecules 2019, 52, 844.  doi: 10.1021/acs.macromol.8b02245

    83. [83]

      Chen Y.-G.; Kakuchi, T. Chem. Rec. 2016, 16, 2161.  doi: 10.1002/tcr.201600034

    84. [84]

      Chen, Y.-G.; Shen, X.-D.; Kakuchi, T. Journal of The Adhesion Society of Japan, 2017, 53, 432.

    85. [85]

      Chen, Y.-G.; Fuchise, K.; Satoh, T.; Kakuchi, T. In Anionic Polymerization: Principles, Practice, Strength, Consequences, and Applications, Springer, Tokyo, 2015, pp. 451~494

  • 加载中
    1. [1]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

Metrics
  • PDF Downloads(21)
  • Abstract views(2190)
  • HTML views(589)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return