Citation: Chen Yougen, Ding Yuansheng. Recent Progress of Organocatalyzed Group Transfer Polymerization[J]. Acta Chimica Sinica, ;2020, 78(8): 733-745. doi: 10.6023/A20040115 shu

Recent Progress of Organocatalyzed Group Transfer Polymerization

  • Corresponding author: Chen Yougen, chenyg@szu.edu.cn
  • Received Date: 24 April 2020
    Available Online: 15 June 2020

    Fund Project: Shenzhen Science and Technology Research Grant JCYJ20190808154011907Project supported by the National Natural Science Foundation of China (No. 21604057), Natural Science Foundation of SZU (No. 000215), Shenzhen Science and Technology Research Grant (No. JCYJ20190808154011907)Natural Science Foundation of SZU 000215the National Natural Science Foundation of China 21604057

Figures(19)

  • Group transfer polymerization (GTP) is a living polymerization method for acrylic-derived monomers developed by DuPont after living anionic polymerization in the 1980s. The acrylic-derived monomers mainly include acrylate, methacrylate, acrylamide and acrylonitrile. The elementary initiation and propagation reactions in GTP are all rooted in the Mukaiyama-Michael addition reaction. Therefore, in principle both base and acid can sever as the catalyst for GTP. Before the small molecular organocatalyst is applied to the polymerization method, the normally used base has been a soluble ionic compound containing a sterically hindered cation, in which the nucleophilic anion acts as the true catalyst. The normally used acid has been a metal or transition metal compound having Lewis acidity. Since 2007, small organic bases and acids have been gradually used to catalyze GTP, and this type of polymerization has been named as organocatalyzed GTP. Compared with the conventional one, organocatalyzed GTP has made a great improvement in the aspects of molecular weight and molecular weight distribution control of acrylic polymers, scope of polymerizable monomers, topological design of polymer, etc. This review mainly focuses on the author's recent work and will be discussed from four aspects: GTP using organic strong base, GTP using organic strong acid, a novel hydrosilane-based GTP, and polymerization mechanism.
  • 加载中
    1. [1]

      Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.  doi: 10.1021/ja000092s

    2. [2]

      MacMillan, D. W. C. Nature 2008, 455, 304.  doi: 10.1038/nature07367

    3. [3]

      Xiao, Y.; Wang, Y.; Zhou, Z. Chinese J. Org. Chem. 2019, 39, 2203.  doi: 10.6023/cjoc201703070

    4. [4]

      Wang, L.; Lin, G.; Zhao, M.; Liu, D.; Jin, Y. Chinese J. Org. Chem. 2018, 38, 642 (in Chinese).
       

    5. [5]

      Ma, S.; Zhong, Y.; Wang, S.; Xu, Z.; Chang, M.; Wang, R. Acta Chim. Sinica 2014, 72, 825 (in Chinese).
       

    6. [6]

      Zhao, H.; Meng, W.; Yang, Z.; Tian, T.; Sheng, Z.; Li, H.; Song, X.; Zhang, Y.; Yang, S.; Li, B. Chinese J. Chem. 2014, 32, 417.  doi: 10.1002/cjoc.201400166

    7. [7]

      Nederberg, F.; Connor, E. F.; Möller, F.; Glauser, M. T.; Hedrick, J. L. Angew. Chem. Int. Ed. 2001, 40, 2712.  doi: 10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z

    8. [8]

      Misaka, H.; Kakuchi, R.; Zhang, C. H.; Sakai, R.; Satoh, T.; Kakuchi, T. Macromolecules 2009, 42, 5091.  doi: 10.1021/ma900712p

    9. [9]

      Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2005, 127, 13798.  doi: 10.1021/ja0543346

    10. [10]

      Miyake, G. M.; Chen, E. Y.-X. Macromolecules 2011, 44, 4116.  doi: 10.1021/ma2007199

    11. [11]

      Sanda, F.; Sanada, H.; Shibasaki, Y.; Endo, T. Macromolecules 2002, 35, 680.  doi: 10.1021/ma011341f

    12. [12]

      Persson, P. V.; Schroder, J.; Wickholm, K.; Hedenstrom, E.; Iversen, T. Macromolecules 2004, 37, 5889.  doi: 10.1021/ma049562j

    13. [13]

      Oledzka, E.; Narine, S. S. J. Appl. Polym. Sci. 2011, 119, 1873.  doi: 10.1002/app.32897

    14. [14]

      Makiguchi, K.; Satoh, T.; Kakuchi, T. Macromolecules 2011, 44, 1999.  doi: 10.1021/ma200043x

    15. [15]

      Gazeau-Bureau, S.; Delcroix, D.; Martin-Vaca, B.; Bonrissou, D.; Navarro, C.; Magnet, S. Macromolecules 2008, 41, 3782.  doi: 10.1021/ma800626q

    16. [16]

      Bourissou, D.; Martin-Vaca, B.; Dumitrescu, A.; Graullier, M.; Lacombe, F. Macromolecules 2005, 38, 9993.  doi: 10.1021/ma051646k

    17. [17]

      Kadota, J.; Pavlović, D.; Desvergne, J.; Bibal, B.; Peruch, F.; Deffieux, A. Macromolecules 2010, 43, 8874.  doi: 10.1021/ma101688d

    18. [18]

      Helou, M.; Miserque, O.; Brusson, J.; Carpentier, J.; Guillaume, S. M. Chem. Eur. J. 2010, 16, 13805.  doi: 10.1002/chem.201001111

    19. [19]

      Connor, E. F.; Nyce, G. W.; Myers, M.; Mock, A.; Hedrick, J. L. J. Am. Chem. Soc. 2002, 124, 914.  doi: 10.1021/ja0173324

    20. [20]

      Nyce, G. W.; Glauser, T.; Connor, E. F.; Mock, A.; Waymouth, R. M.; Hedrick. J. L. J. Am. Chem. Soc. 2003, 125, 3046.  doi: 10.1021/ja021084+

    21. [21]

      Coulembier, O.; Dove, A. P.; Pratt, R. C.; Sentman, A. C.; Culkin, D. A.; Mespouille, L.; Dubois, P.; Waymouth, R. M.; Hedrick, J. L. Angew. Chem. Int. Ed. 2005, 44, 4964.  doi: 10.1002/anie.200500723

    22. [22]

      Csihony, S.; Culkin, D. A.; Sentman, A. C.; Dove, A. P.; Waymouth, R. M.; Hedrick, J. L. J. Am. Chem. Soc. 2005, 127, 9079.  doi: 10.1021/ja050909n

    23. [23]

      Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G. Macromolecules 2007, 40, 4154.  doi: 10.1021/ma070316s

    24. [24]

      Nederberg, F.; Lohmeijer, B. G. G.; Leibfarth, F.; Pratt, R. C.; Choi, J.; Dove, A. P.; Waymouth, R. M.; Hedrick, J. L. Biomacromolecules 2007, 8, 153.  doi: 10.1021/bm060795n

    25. [25]

      Lohmeijer, B. G. G.; Dubois, G.; Leibfarth, F.; Pratt, R. C.; Nederberg, F.; Nelson, A.; Waymouth, R. M.; Wade, C. G.; Hedrick, J. L. Org. Lett. 2006, 8, 4683.  doi: 10.1021/ol0614166

    26. [26]

      Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G. Macromolecules 2007, 40, 4154.  doi: 10.1021/ma070316s

    27. [27]

      Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. J. Am. Chem. Soc. 2007, 129, 12610.  doi: 10.1021/ja074131c

    28. [28]

      Webster, O. W.; Hertler, W. R.; Sogah, D. Y.; Farnham, W. B.; RajanBabu, T. V. J. Am. Chem. Soc. 1983, 105, 5706.  doi: 10.1021/ja00355a039

    29. [29]

      Webster, O. W. Adv. Polym. Sci. 2004, 167, 1.

    30. [30]

      Schubert, W.; Bandermann, F. Makromol. Chem. 1989, 190, 2161.  doi: 10.1002/macp.1989.021900916

    31. [31]

      Schubert, W.; Sitz, H. D.; Bandermann, F. Makromol. Chem. 1989, 190, 2193.  doi: 10.1002/macp.1989.021900919

    32. [32]

      Sogah, D. Y.; Hertler, W. R.; Webster, O. W.; Cohen, G. M. Macromolecules 1987, 20, 1473.  doi: 10.1021/ma00173a006

    33. [33]

      Schubert, W.; Bandermann, F. Makromol. Chem. 1989, 190, 2721.  doi: 10.1002/macp.1989.021901106

    34. [34]

      Hertler, W. R.; Sogah, D. Y.; Webster, O. W. Macromolecules 1984, 17, 1415.  doi: 10.1021/ma00137a021

    35. [35]

      Hellstern, A. M.; DeSimone, J. M.; McGrath, J. E. Polym. Prepr. 1988, 29, 342.

    36. [36]

      Dicker, I. B.; Cohen, G. M.; Farnham, W. B.; Hertler, W. R.; Laganis, E. D.; Sogah, D. Y. Macromolecules 1990, 23, 4034.  doi: 10.1021/ma00220a002

    37. [37]

      Patrickios, C. S.; Hertler, W. R.; Abbott, N. L.; Hatton, T. A. Macromolecules 1994, 27, 930.  doi: 10.1021/ma00082a008

    38. [38]

      Eggert, M.; Freitag, R. J. Polym. Sci. Part A: Polym. Chem. 1994, 32, 803.

    39. [39]

      Ute, K.; Tarao, T.; Hongo, S.; Ohnuma, K.; Hatada, K.; Kitayama, T. Polym. J. 1999, 31, 177.  doi: 10.1295/polymj.31.177

    40. [40]

      Ute, K.; Ohnuma, H.; Shimizu, I.; Kitayama, T. Polym. J. 2006, 38, 999.  doi: 10.1295/polymj.PJ2006041

    41. [41]

      Dicker, I. B. Polym. Prepr. 1988, 29, 114.

    42. [42]

      Zhuang, R.; Müller, A. H. E. Macromol. Symp. 1994, 85, 379.  doi: 10.1002/masy.19940850128

    43. [43]

      Zhuang, R.; Müller, A. H. E. Macromolecules 1995, 28, 8035.  doi: 10.1021/ma00128a010

    44. [44]

      Zhuang, R.; Müller, A. H. E. Macromolecules 1995, 28, 8043.  doi: 10.1021/ma00128a011

    45. [45]

      Ute, K.; Tarao, T.; Hatada, K. Polymer 1997, 44, 7869.

    46. [46]

      Ute, K.; Tarao, T.; Kitayama, T. Polym. J. 2005, 37, 578.  doi: 10.1295/polymj.37.578

    47. [47]

      White, D.; Matyjaszewski, K. Polym. Prepr. 1995, 36, 286.

    48. [48]

      Fuchise, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Polym. Chem. 2013, 4, 4278.  doi: 10.1039/c3py00278k

    49. [49]

      Raynaud, J.; Ciolino, A.; Baceiredo, A.; Destarac, M.; Bonnette, F.; Kato, T.; Gnanou, Y.; Taton, D. Angew. Chem. Int. Ed. 2008, 47, 5390.  doi: 10.1002/anie.200800490

    50. [50]

      Scholten, M. D.; Hedrick, J. L.; Waymouth, R. M. Macromolecules 2008, 41, 7399.  doi: 10.1021/ma801281q

    51. [51]

      Raynaud, J.; Liu, N.; Gnanou, Y.; Taton, D. Macromolecules 2010, 43, 8853.  doi: 10.1021/ma101478p

    52. [52]

      Raynaud, J.; Liu, N.; Fèvre, M.; Gnanou, Y.; Taton, D. Polym. Chem. 2011, 2, 1706.  doi: 10.1039/c1py00077b

    53. [53]

      Scholten, M. D.; Hedrick, J. L.; Waymouth, R. M. Polym. Prepr. 2007, 48, 167.

    54. [54]

      Raynaud, J.; Gnanou, Y.; Taton, D. Macromolecules 2009, 42, 5996.  doi: 10.1021/ma900679p

    55. [55]

      Raynaud, J.; Gnanou, Y.; Taton, D. PMSE Prepr. 2009, 101, 1771.

    56. [56]

      Zhang, Y.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2012, 51, 2465.  doi: 10.1002/anie.201108019

    57. [57]

      Fèvre, M.; Vignolle, J.; Heroguez, V.; Taton, D. Macromolecules 2012, 45, 7711.  doi: 10.1021/ma301412z

    58. [58]

      Zhang, Y.; Chen, E. Y.-X. Macromolecules 2008, 41, 36.  doi: 10.1021/ma702015w

    59. [59]

      Zhang, Y.; Chen, E. Y.-X. Macromolecules 2008, 41, 6353.  doi: 10.1021/ma801125y

    60. [60]

      Miyake, G. M.; Zhang, Y.; Chen, E. Y.-X. Macromolecules 2010, 43, 4902.  doi: 10.1021/ma100615t

    61. [61]

      Zhang, Y.; Gustafson, O.; Chen, E. Y-X. J. Am. Chem. Soc. 2011, 133, 13674.  doi: 10.1021/ja2053573

    62. [62]

      Chen, E. Y.-X. Chem. Rev. 2009, 109, 5157.  doi: 10.1021/cr9000258

    63. [63]

      Zhang, Y.; Lay, F.; García-García, P.; List, B. Chem. Eur. J. 2010, 16, 10462.  doi: 10.1002/chem.201000961

    64. [64]

      Kakuchi, T.; Chen, Y.-G.; Kitakado, J.; Mori, K.; Fuchise, K.; Satoh, T. Macromolecules 2011, 44, 4641.  doi: 10.1021/ma200720p

    65. [65]

      Chen, Y.-G.; Takada, K.; Kubota, N.; Eric, O.-T.; Ito, T.; Isono, T.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 1830.  doi: 10.1039/C4PY01564A

    66. [66]

      Eric, O.-T.; Chen, Y.-G.; Takada, K.; Sato, S.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 7841.  doi: 10.1039/C5PY01112D

    67. [67]

      Chen, Y.-G.; Fuchise, K.; Kawaguchi, S.; Satoh, T.; Kakuchi, T. Macromolecules 2011, 44, 9091.  doi: 10.1021/ma202103d

    68. [68]

      Hsu, J.-C.; Chen, Y.-G.; Kakuchi, T.; Chen, W.-C. Macromolecules 2011, 44, 5168.  doi: 10.1021/ma2006377

    69. [69]

      Kikuchi, S.; Chen, Y.-G.; Fuchise, K.; Takada, K.; Kitakado, J.; Sato, S.; Satoh, T.; Kakuchi, T. Polym. Chem. 2014, 5, 4701.  doi: 10.1039/C4PY00290C

    70. [70]

      Kakuchi, R.; Chiba, K.; Fuchise, K.; Sakai, R.; Satoh, T.; Kakuchi, T. Macromolecules 2009, 42, 8747.  doi: 10.1021/ma902006d

    71. [71]

      Chen, Y.-G.; Takada, K.; Fuchise, K.; Satoh, T.; Kakuchi, T. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3277.  doi: 10.1002/pola.26123

    72. [72]

      Takada, K.; Fuchise, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3560.  doi: 10.1002/pola.26140

    73. [73]

      Takada, K.; Ito, T.; Kitano, K.; Tuschida, S.; Takagi, Y.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Macromolecules 2015, 48, 511.  doi: 10.1021/ma502298v

    74. [74]

      Takada, K.; Fuchise, K.; Kubota, N.; Ito, T.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. Macromolecules 2014, 47, 5514.  doi: 10.1021/ma501106e

    75. [75]

      Fuchise, K.; Sakai, R.; Satoh, T.; Sato, S.; Narumi, A.; Kawaguchi, S.; Kakuchi, T. Macromolecules 2010, 43, 5589.  doi: 10.1021/ma1005765

    76. [76]

      Fuchise, K.; Chen, Y.-G.; Takada, K.; Satoh, T.; Kakuchi, T. Macromol. Chem. Phys. 2012, 213, 1604.  doi: 10.1002/macp.201200146

    77. [77]

      Kikuchi, S.; Chen, Y.-G.; Kitano, K.; Takada, K.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 6845.  doi: 10.1039/C5PY01104C

    78. [78]

      Kikuchi, S.; Chen, Y.-G.; Ichinohe, E.; Sato, S.; Duan, Q.; Shen, X.-D.; Kakuchi, T. Macromolecules 2016, 49, 4828.  doi: 10.1021/acs.macromol.6b01075

    79. [79]

      Fuchise, K.; Tsuchida, S.; Takada, K.; Chen, Y.-G.; Satoh, T.; Kakuchi, T. ACS Macro. Lett. 2014, 3, 1015.  doi: 10.1021/mz5004689

    80. [80]

      Chen, Y.-G.; Kitano, K.; Tsuchida, S.; Kikuchi, S.; Takada, K.; Satoh, T.; Kakuchi, T. Polym. Chem. 2015, 6, 3502.  doi: 10.1039/C5PY00294J

    81. [81]

      Kikuchi, S.; Chen, Y.-G.; Kitano, K.; Satoh, T.; Kakuchi, T. Macromolecules 2016, 49, 3049.  doi: 10.1021/acs.macromol.6b00190

    82. [82]

      Chen, Y.-G.; Jia, Q.; Ding, Y., ; Sato, S.; Xu, L.; Zang, C.; , Shen, X.; Kakuchi, T. Macromolecules 2019, 52, 844.  doi: 10.1021/acs.macromol.8b02245

    83. [83]

      Chen Y.-G.; Kakuchi, T. Chem. Rec. 2016, 16, 2161.  doi: 10.1002/tcr.201600034

    84. [84]

      Chen, Y.-G.; Shen, X.-D.; Kakuchi, T. Journal of The Adhesion Society of Japan, 2017, 53, 432.

    85. [85]

      Chen, Y.-G.; Fuchise, K.; Satoh, T.; Kakuchi, T. In Anionic Polymerization: Principles, Practice, Strength, Consequences, and Applications, Springer, Tokyo, 2015, pp. 451~494

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(21)
  • Abstract views(2163)
  • HTML views(583)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return