Citation: Li Haimei, Luo Huajian, Xiao Qi, Yang Liyun, Huang Shan, Liu Yi. Investigations of Interactions and Mechanisms of Chiral Graphene Quantum Dots with DNA[J]. Acta Chimica Sinica, ;2020, 78(6): 577-586. doi: 10.6023/A20040109 shu

Investigations of Interactions and Mechanisms of Chiral Graphene Quantum Dots with DNA

  • Corresponding author: Huang Shan, huangs@nnnu.edu.cn Liu Yi, yiliuchem@whu.edu.cn
  • Received Date: 17 April 2020
    Available Online: 1 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21873075, 21864006, 21763005, 21673166, 21563006)the National Natural Science Foundation of China 21873075the National Natural Science Foundation of China 21763005the National Natural Science Foundation of China 21563006the National Natural Science Foundation of China 21673166the National Natural Science Foundation of China 21864006

Figures(10)

  • As one of the most important characteristics of nature, chirality is closely related to life activities. Therefore, chiral nanomaterials have caused great attention in material, biology and some related fields. In this paper, a new preparation method for chiral graphene quantum dots (L-GQDs and D-GQDs) was proposed via one-step hydrothermal method. This method used citric acid and L(or D)-tryptophan as raw materials to synthesize chiral graphene quantum dots. Circular dichroism spectroscopy proved that the two chiral graphene quantum dots had two chiral signals with high symmetry, and the absorption peaks were located at 230 nm and 305 nm, respectively. A lot of thermodynamic parameters have been obtained by using fluorescence. The results of viscosity measurement, DNA melting experiments and multi-spectroscopic methods indicated that there was a large chiral difference between the combination of chiral graphene quantum dots and ctDNA. UV-Vis absorption spectrometry proved that the two different chiral graphene quantum dots caused the slightly red shift of absorption peak and hypochromic effect of ctDNA. These quantum dots increased the melting temperature of DNA, but reduced the relative viscosity of ctDNA. Through hydrogen bonding and van der Waals interaction, both graphene quantum dots were inserted into the G-C base pair of ctDNA, which affected the right-handed B-form helicity of ctDNA significantly. The steric hindrance effects of L-GQDs and D-GQDs were different, resulting in the differences of them in their intercalation and binding with ctDNA. Comparably, D-GQDs with right-handedness exhibited the strongest intercalative binding ability with ctDNA, and were easier to intercalate into ctDNA with the right-handed B-helical structure, causing the significant influence on right-handed B-helical structure of ctDNA. These results revealed the molecular mechanisms of the intercalative binding interactions between chiral graphene quantum dots and DNA, which provided valuable information for the development of chiral nanomaterials in chemistry, biology, and medicine areas.
  • 加载中
    1. [1]

      Crassous, J. Chem. Soc. Rev. 2009, 38, 830.  doi: 10.1039/b806203j

    2. [2]

      Li, Q.; Jia, Y.; Li, J. B. Acta Chim. Sinica 2019, 77, 1173.
       

    3. [3]

      Xiong, F.; Li, L. Chinese J. Org. Chem. 2018, 38, 2927.

    4. [4]

      Cai, J.; Hao, C.; Sun, M.; Ma, W.; Xu, C.; Kuang, H. Small 2018, 14, 1703931.  doi: 10.1002/smll.201703931

    5. [5]

      Mohammadi, E.; Tsakmakidis, K. L.; Askarpour, A. N.; Dehkhoda, P.; Tavakkoli, A.; Altug, H. ACS Photonics 2018, 5, 2669.  doi: 10.1021/acsphotonics.8b00270

    6. [6]

      Liu, G. J.; Shi, H. Chinese J. Org. Chem. 2016, 36, 2583.  doi: 10.6023/cjoc201603037

    7. [7]

      Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Nano Lett. 2013, 13, 2436.  doi: 10.1021/nl400368v

    8. [8]

      Ge, S. Y.; He, J. B.; Ma, C. T.; Liu, J. Y.; Xi, F. N.; Dong, X. P. Talanta 2019, 199, 581.  doi: 10.1016/j.talanta.2019.02.098

    9. [9]

      Lu, H. T.; Li, W. J.; Dong, H. F.; Wei, M. L. Small 2019, 15, 1902136.  doi: 10.1002/smll.201902136

    10. [10]

      Sajjadi, S.; Khataee, A.; Soltani, R. D. C.; Hasanzadeh, A. J. Phys. Chem. Solids 2019, 127, 140.  doi: 10.1016/j.jpcs.2018.12.014

    11. [11]

      Zhou, X. Q.; Sun, Q.; Jiang, L.; Li, S. T.; Gu, W.; Tian, J. L.; Liu, X.; Yan, S. P. Dalton Trans. 2015, 44, 9516.  doi: 10.1039/C5DT00931F

    12. [12]

      Carrillo-Carrión, C.; Cárdenas, S.; Simonet, B. M.; Simonet, B. M.; Valcárcel, M. Anal. Chem. 2009, 81, 4730.  doi: 10.1021/ac900034h

    13. [13]

      Zeng, C. J.; Jin, R. C. Chem 2017, 12, 1839.

    14. [14]

      Jiang, S.; Chekini, M.; Qu, Z. B.; Wang, Y. C.; Yeltik, A.; Liu, Y. G.; Kotlyar, A.; Zhang, T. Y.; Li, B.; Demir, H. V.; Kotov, N. A. J. Am. Chem. Soc. 2017, 139, 13701.  doi: 10.1021/jacs.7b01445

    15. [15]

      Li, F.; Li, Y. Y.; Yang, X.; Han, X. X.; Yang, J.; Wei, T. T.; Yang, D. Y.; Xu, H. P.; Nie, G. J. Angew. Chem., Int. Ed. 2018, 57, 2377.  doi: 10.1002/anie.201712453

    16. [16]

      Suzuki, N.; Wang, Y. C.; Elvati, P.; Qu, Z. B.; Kim, K.; Jiang, S.; Baumeister, E.; Lee, J.; Yeom, B. J.; Bahng, J. H.; Lee, J.; Violi, A.; Kotov, N. A. ACS Nano 2016, 10, 1744.  doi: 10.1021/acsnano.5b06369

    17. [17]

      Xu, L. G.; Xu, Z.; Ma, W.; Liu, L. Q.; Wang, L. B.; Kuang, H.; Xu, C. H. J. Mater. Chem. B 2013, 1, 4478.  doi: 10.1039/c3tb20692k

    18. [18]

      Gan, Z.; Xu, H.; Hao, Y. Nanoscale 2016, 8, 7794.  doi: 10.1039/C6NR00605A

    19. [19]

      Xu, M. H.; He, G. L.; Li, Z. H.; He, F. J.; Gao, F.; Su, Y. J.; Zhang, L. Y.; Yang, Z.; Zhang, Y. F. Nanoscale 2014, 6, 10307.  doi: 10.1039/C4NR02792B

    20. [20]

      Singh, H.; Sreedharan, S.; Tiwari, K.; Green, N. H.; Smythe, C.; Pramanik, S. K.; Thomas, J. A.; Das, A. Chem. Commun. 2019, 55, 52.

    21. [21]

      SimoEs, E. F. C.; Da Silva, J. C. G. E.; LeitaO, J. M. M. Anal. Chim. Acta 2014, 852, 174.  doi: 10.1016/j.aca.2014.08.050

    22. [22]

      Liu, Z. G.; Xiao, J. C.; Wu, X. W.; Lin, L. Q.; Weng, S. H.; Chen, M.; Cai, X. H.; Lin, X. H. Sens. Actuators, B 2016, 229, 217.  doi: 10.1016/j.snb.2016.01.127

    23. [23]

      Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J. J.; Ajayan, P. M. Nano Lett. 2012, 12, 844.  doi: 10.1021/nl2038979

    24. [24]

      Zhou, X.; Zhang, G.; Wang, L. J. Lumin. 2014, 154, 116.  doi: 10.1016/j.jlumin.2014.04.017

    25. [25]

      Kurbanoglu, S.; Dogan-Topal, B.; Hlavata, L.; Labuda, J.; Ozkan, S. A.; Uslu, B. Electrochim. Acta 2015, 169, 233.  doi: 10.1016/j.electacta.2015.04.087

    26. [26]

      Kumar, C. V.; Turner, R. S.; Asuncion, E. H. J. Photochem. Photobiol., A 1993, 74, 231.  doi: 10.1016/1010-6030(93)80121-O

    27. [27]

      Li, Y.; Zhang, G. W.; Pan, J. H.; Zhang, Y. Sens. Actuators, B 2014, 191, 464.  doi: 10.1016/j.snb.2013.10.022

    28. [28]

      Cohen, G.; Eisenberg, H. Biopolymers 1969, 8, 45.  doi: 10.1002/bip.1969.360080105

    29. [29]

      Coury, J. E.; Mcfail-Isom, L.; Williams, L. D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 12283.  doi: 10.1073/pnas.93.22.12283

    30. [30]

      Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York, 2006.

    31. [31]

      Leckband, D. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 1.  doi: 10.1146/annurev.biophys.29.1.1

    32. [32]

      Ross, P. D.; Subramanian, S. Biochemistry 1981, 20, 3096.  doi: 10.1021/bi00514a017

    33. [33]

      Huang, S.; Liang, Y.; Huang, C. S.; Su, W.; Lei, X. L.; Liu, Y.; Xiao, Q. Luminescence 2016, 31, 1384.  doi: 10.1002/bio.3119

    34. [34]

      Blackburn, G. M.; Gait, M. J. Nucleic Acids in Chemistry and Biology, 2nd ed., Oxford University Press, New York, 1996.

    35. [35]

      Barton, J. K. Science 1986, 233, 727.  doi: 10.1126/science.3016894

    36. [36]

      Hanczyc, P.; Lincoln, P.; Norden, B. J. Phys. Chem. B 2013, 117, 2947.  doi: 10.1021/jp311952x

    37. [37]

      Jangir, D. K.; Charak, S.; Mehrotra, R.; Kundu, S. J. Photochem. Photobiol., B 2011, 105, 143.  doi: 10.1016/j.jphotobiol.2011.08.003

  • 加载中
    1. [1]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    2. [2]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    3. [3]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    6. [6]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(7)
  • Abstract views(1648)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return