Citation: Li Haimei, Luo Huajian, Xiao Qi, Yang Liyun, Huang Shan, Liu Yi. Investigations of Interactions and Mechanisms of Chiral Graphene Quantum Dots with DNA[J]. Acta Chimica Sinica, ;2020, 78(6): 577-586. doi: 10.6023/A20040109 shu

Investigations of Interactions and Mechanisms of Chiral Graphene Quantum Dots with DNA

  • Corresponding author: Huang Shan, huangs@nnnu.edu.cn Liu Yi, yiliuchem@whu.edu.cn
  • Received Date: 17 April 2020
    Available Online: 1 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21873075, 21864006, 21763005, 21673166, 21563006)the National Natural Science Foundation of China 21873075the National Natural Science Foundation of China 21763005the National Natural Science Foundation of China 21563006the National Natural Science Foundation of China 21673166the National Natural Science Foundation of China 21864006

Figures(10)

  • As one of the most important characteristics of nature, chirality is closely related to life activities. Therefore, chiral nanomaterials have caused great attention in material, biology and some related fields. In this paper, a new preparation method for chiral graphene quantum dots (L-GQDs and D-GQDs) was proposed via one-step hydrothermal method. This method used citric acid and L(or D)-tryptophan as raw materials to synthesize chiral graphene quantum dots. Circular dichroism spectroscopy proved that the two chiral graphene quantum dots had two chiral signals with high symmetry, and the absorption peaks were located at 230 nm and 305 nm, respectively. A lot of thermodynamic parameters have been obtained by using fluorescence. The results of viscosity measurement, DNA melting experiments and multi-spectroscopic methods indicated that there was a large chiral difference between the combination of chiral graphene quantum dots and ctDNA. UV-Vis absorption spectrometry proved that the two different chiral graphene quantum dots caused the slightly red shift of absorption peak and hypochromic effect of ctDNA. These quantum dots increased the melting temperature of DNA, but reduced the relative viscosity of ctDNA. Through hydrogen bonding and van der Waals interaction, both graphene quantum dots were inserted into the G-C base pair of ctDNA, which affected the right-handed B-form helicity of ctDNA significantly. The steric hindrance effects of L-GQDs and D-GQDs were different, resulting in the differences of them in their intercalation and binding with ctDNA. Comparably, D-GQDs with right-handedness exhibited the strongest intercalative binding ability with ctDNA, and were easier to intercalate into ctDNA with the right-handed B-helical structure, causing the significant influence on right-handed B-helical structure of ctDNA. These results revealed the molecular mechanisms of the intercalative binding interactions between chiral graphene quantum dots and DNA, which provided valuable information for the development of chiral nanomaterials in chemistry, biology, and medicine areas.
  • 加载中
    1. [1]

      Crassous, J. Chem. Soc. Rev. 2009, 38, 830.  doi: 10.1039/b806203j

    2. [2]

      Li, Q.; Jia, Y.; Li, J. B. Acta Chim. Sinica 2019, 77, 1173.
       

    3. [3]

      Xiong, F.; Li, L. Chinese J. Org. Chem. 2018, 38, 2927.

    4. [4]

      Cai, J.; Hao, C.; Sun, M.; Ma, W.; Xu, C.; Kuang, H. Small 2018, 14, 1703931.  doi: 10.1002/smll.201703931

    5. [5]

      Mohammadi, E.; Tsakmakidis, K. L.; Askarpour, A. N.; Dehkhoda, P.; Tavakkoli, A.; Altug, H. ACS Photonics 2018, 5, 2669.  doi: 10.1021/acsphotonics.8b00270

    6. [6]

      Liu, G. J.; Shi, H. Chinese J. Org. Chem. 2016, 36, 2583.  doi: 10.6023/cjoc201603037

    7. [7]

      Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Nano Lett. 2013, 13, 2436.  doi: 10.1021/nl400368v

    8. [8]

      Ge, S. Y.; He, J. B.; Ma, C. T.; Liu, J. Y.; Xi, F. N.; Dong, X. P. Talanta 2019, 199, 581.  doi: 10.1016/j.talanta.2019.02.098

    9. [9]

      Lu, H. T.; Li, W. J.; Dong, H. F.; Wei, M. L. Small 2019, 15, 1902136.  doi: 10.1002/smll.201902136

    10. [10]

      Sajjadi, S.; Khataee, A.; Soltani, R. D. C.; Hasanzadeh, A. J. Phys. Chem. Solids 2019, 127, 140.  doi: 10.1016/j.jpcs.2018.12.014

    11. [11]

      Zhou, X. Q.; Sun, Q.; Jiang, L.; Li, S. T.; Gu, W.; Tian, J. L.; Liu, X.; Yan, S. P. Dalton Trans. 2015, 44, 9516.  doi: 10.1039/C5DT00931F

    12. [12]

      Carrillo-Carrión, C.; Cárdenas, S.; Simonet, B. M.; Simonet, B. M.; Valcárcel, M. Anal. Chem. 2009, 81, 4730.  doi: 10.1021/ac900034h

    13. [13]

      Zeng, C. J.; Jin, R. C. Chem 2017, 12, 1839.

    14. [14]

      Jiang, S.; Chekini, M.; Qu, Z. B.; Wang, Y. C.; Yeltik, A.; Liu, Y. G.; Kotlyar, A.; Zhang, T. Y.; Li, B.; Demir, H. V.; Kotov, N. A. J. Am. Chem. Soc. 2017, 139, 13701.  doi: 10.1021/jacs.7b01445

    15. [15]

      Li, F.; Li, Y. Y.; Yang, X.; Han, X. X.; Yang, J.; Wei, T. T.; Yang, D. Y.; Xu, H. P.; Nie, G. J. Angew. Chem., Int. Ed. 2018, 57, 2377.  doi: 10.1002/anie.201712453

    16. [16]

      Suzuki, N.; Wang, Y. C.; Elvati, P.; Qu, Z. B.; Kim, K.; Jiang, S.; Baumeister, E.; Lee, J.; Yeom, B. J.; Bahng, J. H.; Lee, J.; Violi, A.; Kotov, N. A. ACS Nano 2016, 10, 1744.  doi: 10.1021/acsnano.5b06369

    17. [17]

      Xu, L. G.; Xu, Z.; Ma, W.; Liu, L. Q.; Wang, L. B.; Kuang, H.; Xu, C. H. J. Mater. Chem. B 2013, 1, 4478.  doi: 10.1039/c3tb20692k

    18. [18]

      Gan, Z.; Xu, H.; Hao, Y. Nanoscale 2016, 8, 7794.  doi: 10.1039/C6NR00605A

    19. [19]

      Xu, M. H.; He, G. L.; Li, Z. H.; He, F. J.; Gao, F.; Su, Y. J.; Zhang, L. Y.; Yang, Z.; Zhang, Y. F. Nanoscale 2014, 6, 10307.  doi: 10.1039/C4NR02792B

    20. [20]

      Singh, H.; Sreedharan, S.; Tiwari, K.; Green, N. H.; Smythe, C.; Pramanik, S. K.; Thomas, J. A.; Das, A. Chem. Commun. 2019, 55, 52.

    21. [21]

      SimoEs, E. F. C.; Da Silva, J. C. G. E.; LeitaO, J. M. M. Anal. Chim. Acta 2014, 852, 174.  doi: 10.1016/j.aca.2014.08.050

    22. [22]

      Liu, Z. G.; Xiao, J. C.; Wu, X. W.; Lin, L. Q.; Weng, S. H.; Chen, M.; Cai, X. H.; Lin, X. H. Sens. Actuators, B 2016, 229, 217.  doi: 10.1016/j.snb.2016.01.127

    23. [23]

      Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J. J.; Ajayan, P. M. Nano Lett. 2012, 12, 844.  doi: 10.1021/nl2038979

    24. [24]

      Zhou, X.; Zhang, G.; Wang, L. J. Lumin. 2014, 154, 116.  doi: 10.1016/j.jlumin.2014.04.017

    25. [25]

      Kurbanoglu, S.; Dogan-Topal, B.; Hlavata, L.; Labuda, J.; Ozkan, S. A.; Uslu, B. Electrochim. Acta 2015, 169, 233.  doi: 10.1016/j.electacta.2015.04.087

    26. [26]

      Kumar, C. V.; Turner, R. S.; Asuncion, E. H. J. Photochem. Photobiol., A 1993, 74, 231.  doi: 10.1016/1010-6030(93)80121-O

    27. [27]

      Li, Y.; Zhang, G. W.; Pan, J. H.; Zhang, Y. Sens. Actuators, B 2014, 191, 464.  doi: 10.1016/j.snb.2013.10.022

    28. [28]

      Cohen, G.; Eisenberg, H. Biopolymers 1969, 8, 45.  doi: 10.1002/bip.1969.360080105

    29. [29]

      Coury, J. E.; Mcfail-Isom, L.; Williams, L. D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 12283.  doi: 10.1073/pnas.93.22.12283

    30. [30]

      Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York, 2006.

    31. [31]

      Leckband, D. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 1.  doi: 10.1146/annurev.biophys.29.1.1

    32. [32]

      Ross, P. D.; Subramanian, S. Biochemistry 1981, 20, 3096.  doi: 10.1021/bi00514a017

    33. [33]

      Huang, S.; Liang, Y.; Huang, C. S.; Su, W.; Lei, X. L.; Liu, Y.; Xiao, Q. Luminescence 2016, 31, 1384.  doi: 10.1002/bio.3119

    34. [34]

      Blackburn, G. M.; Gait, M. J. Nucleic Acids in Chemistry and Biology, 2nd ed., Oxford University Press, New York, 1996.

    35. [35]

      Barton, J. K. Science 1986, 233, 727.  doi: 10.1126/science.3016894

    36. [36]

      Hanczyc, P.; Lincoln, P.; Norden, B. J. Phys. Chem. B 2013, 117, 2947.  doi: 10.1021/jp311952x

    37. [37]

      Jangir, D. K.; Charak, S.; Mehrotra, R.; Kundu, S. J. Photochem. Photobiol., B 2011, 105, 143.  doi: 10.1016/j.jphotobiol.2011.08.003

  • 加载中
    1. [1]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    2. [2]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    3. [3]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    20. [20]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(6)
  • Abstract views(1475)
  • HTML views(286)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return