Citation: Cao Hongtao, Li Bo, Wan Jun, Yu Tao, Xie Linghai, Sun Chen, Liu Yuyu, Wang Jin, Huang Wei. Cyano-substituted Spiro[fluorine-9, 9'-xanthene] Derivatives: Exciplex Emission and Property Manipulation[J]. Acta Chimica Sinica, ;2020, 78(7): 680-687. doi: 10.6023/A20030097 shu

Cyano-substituted Spiro[fluorine-9, 9'-xanthene] Derivatives: Exciplex Emission and Property Manipulation

  • Corresponding author: Xie Linghai, iamlhxie@njupt.edu.cn Liu Yuyu, iamyyliu@njupt.edu.cn Huang Wei, iamwhuang@njupt.edu.cn
  • † These authors contributed equally to this work
  • Received Date: 31 March 2020
    Available Online: 3 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 61605090, 61604081, 61604076, 21774061, 91833306), the Natural Science Foundation of Jiangsu Province (BK20190090, BK20180751), the Six Peak Talents Foundation of Jiangsu Province (XCL-CXTD-009) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, YX030003)National Natural Science Foundation of China 91833306the Six Peak Talents Foundation of Jiangsu Province XCL-CXTD-009National Natural Science Foundation of China 61604081the Natural Science Foundation of Jiangsu Province BK20180751National Natural Science Foundation of China 61604076the Priority Academic Program Development of Jiangsu Higher Education Institutions YX030003the Natural Science Foundation of Jiangsu Province BK20190090National Natural Science Foundation of China 21774061National Natural Science Foundation of China 61605090

Figures(5)

  • Thermally activated delayed fluorescence (TADF) molecules have great potential in developing organic light-emitting diodes (OLEDs) because of their efficient emission and low price. Compared to pure-molecules, exciplex systems are drawing much attention since they can realize small singlet-triplet energy splitting (ΔEST) more easily for TADF. However, the species and molecular design systems of electron-acceptors for exciplex-TADF are still limited even though some acceptors have been reported. In addition, the relationship between TADF properties and the structures of acceptors requires further investigations. Herein, we report the design and synthesis of two novel spiro[fluorine-9, 9'-xanthene]-based acceptors (CNSFDBX and DCNSFDBX) for achieving exciplex-emissions by using tris(4-carbazoyl-9-ylphenyl)amine (TCTA) as a donor. The photoluminescence measurements suggest that both of the doping-systems (TCTA:CNSFDBX and TCTA:DCNSFDBX) possess exciplex emissions. Whereas, it is observed that the TCTA:DCNSFDBX system displays higher photoluminescence quantum yield and electroluminescence efficiency than TCTA:CNSFDBX. For better explaining this phenomenon, we perform low-temperature fluorescence and phosphorescence spectra investigations. The experimental results show that the TCTA:DCNSFDBX system exhibits smaller ΔEST values (0.12 eV) than TCTA:CNSFDBX (0.46 eV). This results indicate that the reverse intersystem crossing from non-radiative triplet states (T1) to radiative singlet states (S1) and TADF processes can be realized more easily in the TCTA:DCNSFDBX system. Moreover, the electrochemical measurements and theoretical calculations suggest that the lowest unoccupied molecular orbital (LUMO) level of DCNSFDBX (-2.86 eV) is lower than that of CNSFDBX (-2.47 eV). This situation implies that DCNSFDBX possesses stronger electron-accepting ability than CNSFDBX with the help of dicyano-substitution. Furthermore, the TCTA:DCNSFDBX system displays larger driving force (0.39 eV) than TCTA:CNSFDBX (0.22 eV) in their exciplex-formation processes, suggesting the exciplex-emission (TCTA:DCNSFDBX) can be achieved more easily. Therefore, the higher exciplex-emission efficiencies of the TCTA:DCNSFDBX system are attributed to the stronger electron-acceptability of DCNSFDBX through dicyano- substitution and larger driving force in its exciplex emission process. This work provides a route to further development of new electron-acceptors for exciplex-TADF.
  • 加载中
    1. [1]

      Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.  doi: 10.1063/1.98799

    2. [2]

      Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.  doi: 10.1038/25954

    3. [3]

      Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332.  doi: 10.1126/science.267.5202.1332

    4. [4]

      Yu, J.; Xiao, Y.; Chen, J. Chin. J. Org. Chem. 2019, 39, 3460(in Chinese).

    5. [5]

      Zhang, T.; Qiu, Z.; Cheng, X.; Zhang, Y.; Wang, X. Chin. J. Org. Chem. 2019, 39, 2534(in Chinese).

    6. [6]

      Wang, T.; Hua, X.; Yu, Y.; Yuan, Y.; Feng, M.; Jiang, Z. Chin. J. Org. Chem. 2019, 39, 1436(in Chinese).

    7. [7]

      He, X.; Xiao, Y.; Yuan, X.; Ye, S.; Jiang, H. Chin. J. Org. Chem. 2019, 39, 761(in Chinese).

    8. [8]

      Wang, F.; Cao, X.; Mei, L.; Zhang, X.; Hu, J.; Tao, Y. Chinese J. Chem. 2018, 36, 241.  doi: 10.1002/cjoc.201700703

    9. [9]

      Lin, D.; Song, S.; Chen, Z.; Guo, P.; Chen, J.; Shi, H.; Mai, Y.; Song, H. Chin. J. Org. Chem. 2018, 38, 103(in Chinese).

    10. [10]

      Li, X.; Zhang, J.; Zhao, Z.; Wang, L.; Yang, H.; Chang, Q.; Jiang, N.; Liu, Z.; Bian, Z.; Liu, W.; Lu, Z.; Huang, C. Adv. Mater. 2018, 30, 1705005.  doi: 10.1002/adma.201705005

    11. [11]

      Klimes, K.; Zhu, Z.-Q.; Li, J. Adv. Funct. Mater. 2019, 29, 1903068.  doi: 10.1002/adfm.201903068

    12. [12]

      Kim, K.-H.; Kim, J.-J. Adv. Mater. 2018, 30, 1705600.  doi: 10.1002/adma.201705600

    13. [13]

      You, Y.; Park, S. Y. Dalton Trans. 2009, 1267.

    14. [14]

      Cheng, G.; Kwak, Y.; To, W.-P.; Lam, T.-L.; Tong, G. S. M.; Sit, M.-K.; Gong, S.; Choi, B.; Choi, W. i.; Yang, C.; Che, C.-M. ACS Appl. Mater. Interfaces 2019, 11, 45161.  doi: 10.1021/acsami.9b11715

    15. [15]

      Cao, H.; Shan, G.; Wen, X.; Sun, H.; Su, Z.; Zhong, R.; Xie, W.; Li, P.; Zhu, D. J. Mater. Chem. C 2013, 1, 7371.  doi: 10.1039/c3tc31365d

    16. [16]

      Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802.  doi: 10.1002/adma.200900983

    17. [17]

      Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.  doi: 10.1002/adma.201402532

    18. [18]

      Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. Nat. Rev. Mater. 2018, 3, 18020.  doi: 10.1038/natrevmats.2018.20

    19. [19]

      Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Chem. Commun. 2012, 48, 9580.  doi: 10.1039/c2cc31468a

    20. [20]

      Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392.  doi: 10.1039/c2cc36237f

    21. [21]

      Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.  doi: 10.1002/adma.201605444

    22. [22]

      Sarma, M.; Wong, K.-T. ACS Appl. Mater. Interfaces 2018, 10, 19279.  doi: 10.1021/acsami.7b18318

    23. [23]

      Ng, T.-W.; Lo, M.-F.; Fung, M.-K.; Zhang, W.-J.; Lee, C.-S. Adv. Mater. 2014, 26, 5569.  doi: 10.1002/adma.201400563

    24. [24]

      Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photon. 2012, 6, 253.  doi: 10.1038/nphoton.2012.31

    25. [25]

      Li, J.; Nomura, H.; Miyazaki, H.; Adachi, C. Chem. Commun. 2014, 50, 6174.  doi: 10.1039/C4CC01590H

    26. [26]

      Liu, X.-K.; Chen, Z.; Zheng, C.-J.; Liu, C.-L.; Lee, C.-S.; Li, F.; Ou, X.-M.; Zhang, X.-H. Adv. Mater. 2015, 27, 2378.  doi: 10.1002/adma.201405062

    27. [27]

      Zhang, M.; Liu, W.; Zheng, C.-J.; Wang, K.; Shi, Y.-Z.; Li, X.; Lin, H.; Tao, S.-L.; Zhang, X.-H. Adv. Sci. 2019, 6, 1801938.

    28. [28]

      Chapran, M.; Pander, P.; Vasylieva, M.; Wiosna-Salyga, G.; Ulanski, J.; Dias, F. B.; Data, P. ACS Appl. Mater. Interfaces 2019, 11, 13460.  doi: 10.1021/acsami.8b18284

    29. [29]

      Cao, H.-T.; Zhao, Y.; Sun, C.; Fang, D.; Xie, L.-H.; Yan, M.-N.; Wei, Y.; Zhang, H.-M.; Huang, W. Dyes Pigm. 2018, 149, 422.  doi: 10.1016/j.dyepig.2017.10.019

    30. [30]

      Cao, H.-T.; Hong, C.-S.; Ye, D.-Q.; Liu, L.-H.; Xie, L.-H.; Chen, S.-F.; Sun, C.; Wang, S.-S.; Zhang, H.-M.; Huang, W. J. Mol. Struct. 2019, 1196, 132.  doi: 10.1016/j.molstruc.2019.06.003

    31. [31]

      Xie, L.-H.; Liu, F.; Tang, C.; Hou, X.-Y.; Hua, Y.-R.; Fan, Q.-L.; Huang, W. Org. Lett. 2006, 8, 2787.  doi: 10.1021/ol060871z

    32. [32]

      Ou, C.-J.; Ren, B.-Y.; Li, J.-W.; Lin, D.-Q.; Zhong, C.; Xie, L.-H.; Zhao, J.-F.; Mi, B.-X.; Cao, H.-T.; Huang, W. Org. Electron. 2017, 43, 87.  doi: 10.1016/j.orgel.2016.12.029

    33. [33]

      Ou, C.-J.; Zhu, C.; Ding, X.-H.; Yang, L.; Lin, J.-Y.; Xie, L.-H.; Qian, Y.; Xu, C.-X.; Zhao, J.-F.; Huang, W. J. Mater. Chem. C 2017, 5, 5345.  doi: 10.1039/C7TC00675F

    34. [34]

      Iwata, S.; Tanaka, J.; Nagakura, S. J. Chem. Phys. 1967, 47, 2203.

    35. [35]

      Gould, I. R.; Young, R. H.; Mueller, L. J.; Farid, S. J. Am. Chem. Soc. 1994, 116, 8176.  doi: 10.1021/ja00097a027

    36. [36]

      Kalinowski, J.; Giro, G.; Cocchi, M.; Fattori, V.; Di Marco, P. Appl. Phys. Lett. 2000, 76, 2352.  doi: 10.1063/1.126343

    37. [37]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.  doi: 10.1038/nature11687

    38. [38]

      Wu, T.-L.; Liao, S.-Y.; Huang, P.-Y.; Hong, Z.-S.; Huang, M.-P.; Lin, C.-C.; Cheng, M.-J.; Cheng, C.-H. ACS Appl. Mater. Interfaces 2019, 11, 19294.  doi: 10.1021/acsami.9b04365

  • 加载中
    1. [1]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    11. [11]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(13)
  • Abstract views(968)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return