Citation: Jiang Chenghao, Feng Xiao, Wang Bo. Preparation of Covalent Organic Framework Membranes and Their Applications in Seawater Desalination and Water Treatment[J]. Acta Chimica Sinica, ;2020, 78(6): 466-477. doi: 10.6023/A20030088 shu

Preparation of Covalent Organic Framework Membranes and Their Applications in Seawater Desalination and Water Treatment

  • Corresponding author: Feng Xiao, fengxiao86@bit.edu.cn
  • Received Date: 25 March 2020
    Available Online: 20 May 2020

    Fund Project: the National Natural Science Foundation of China 21922502the National Natural Science Foundation of China 21471018Project supported by the National Natural Science Foundation of China (Nos. 21922502, 21674012, 21625102, 21471018) and Beijing Institute of Technology Research Fund Programthe National Natural Science Foundation of China 21674012the National Natural Science Foundation of China 21625102

Figures(9)

  • The increasing shortage of freshwater resources and water pollution are important challenges facing the world, and vigorous development of seawater desalination and water treatment technologies is an effective way to alleviate this problem. In recent years, low energy consumption and green membrane-separation technology has been widely used in the fields of seawater desalination and water treatment. Covalent organic framework (COF) membranes are potential high-performance membrane separation materials due to their adjustable pore size and chemical environment. In this paper, the research progress of COF-membranes synthesis methodology is introduced in detail, the research of COF membranes in seawater desalination and water treatment is summarized, and the challenges and perspectives of COF membranes for seawater desalination and treatment are elaborated.
  • 加载中
    1. [1]

      Service, R. F. Science 2006, 313, 1088.  doi: 10.1126/science.313.5790.1088

    2. [2]

      Elimelech, M. J. Water Supply Res. T. 2006, 55, 3.  doi: 10.2166/aqua.2005.064

    3. [3]

      Elimelech, M.; Phillip, W. A. Science 2011, 333, 712.  doi: 10.1126/science.1200488

    4. [4]

      Werber, J. R.; Deshmukh, A.; Elimelech, M. Environ. Sci. Tech. Let. 2016, 3, 112.  doi: 10.1021/acs.estlett.6b00050

    5. [5]

      Cussler, E. L.; Dutta, B. K. AlChE J. 2012, 58, 3825.  doi: 10.1002/aic.13779

    6. [6]

      Hua, B.; Xiong, H.; Kadhom, M.; Wang, L.; Zhu, G.; Yang, J.; Cunningham, G.; Deng, B. Water Environ. Res. 2017, 89, 974.  doi: 10.2175/106143017X15023776270214

    7. [7]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Nature 2008, 452, 301.  doi: 10.1038/nature06599

    8. [8]

      Qu, K. Y.; Han, Q. X Construction & Design for Project 2020, 02, 140 (in Chinese).
       

    9. [9]

      Robeson, L. M. J. Membr. Sci. 2008, 320, 390.  doi: 10.1016/j.memsci.2008.04.030

    10. [10]

      Gin, D. L.; Noble, R. D. Science 2011, 332, 674.  doi: 10.1126/science.1203771

    11. [11]

      Wang, S.; Feng, X.; Wang, B. Chin. Sci. Bull. 2018, 63, 2229.  doi: 10.1360/N972018-00407

    12. [12]

      Huang, N.; Wang, P.; Jiang, D. L. Nat. Rev. Mater. 2016, 1. 1.

    13. [13]

      Feng, X.; Ding, X. S.; Jiang, D. L. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    14. [14]

      Qian, H. L.; Yang, C. X.; Wang, W. L.; Yang, C.; Yan, X. P. J. Chromatogr. A 2018, 1542, 1.  doi: 10.1016/j.chroma.2018.02.023

    15. [15]

      Kandambeth, S.; Dey, K.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 1807.  doi: 10.1021/jacs.8b10334

    16. [16]

      Li, L. L.; Liu, S.; Zhang, Q.; Hu, N. T.; Wei, L. M.; Yang, Z.; Wei, H. Acta Phys.-Chim. Sin. 2017, 33, 1960 (in Chinese).  doi: 10.3866/PKU.WHXB201705191

    17. [17]

      Zhou, B.; Chen, L. Acta Chim. Sinica 2015, 73, 487 (in Chinese).
       

    18. [18]

      Wang, Z.; Li, H.; Yan, S.; Fang, Q. Acta Chim. Sinica 2020, 78, 63 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2020.01.008
       

    19. [19]

      Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    20. [20]

      Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570.  doi: 10.1021/ja8096256

    21. [21]

      Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2008, 47, 3450.  doi: 10.1002/anie.200705710

    22. [22]

      Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.  doi: 10.1021/ja308278w

    23. [23]

      Zhang, C.; Wu, B. H.; Ma, M. Q.; Wang, Z.; Xu, Z. K. Chem. Soc. Rev. 2019, 48, 3811.  doi: 10.1039/C9CS00322C

    24. [24]

      Wang, H.; Zeng, Z. T.; Xu, P.; Li, L. S.; Zeng, G. M.; Xiao, R.; Tang, Z. Y.; Huang, D. L.; Tang, L.; Lai, C.; Jiang, D. N.; Liu, Y.; Yi, H.; Qin, L.; Ye, S. J.; Ren, X. Y.; Tang, W. W. Chem. Soc. Rev. 2019, 48, 488.  doi: 10.1039/C8CS00376A

    25. [25]

      Yuan, S. S.; Li, X.; Zhu, J. Y.; Zhang, G.; Van Puyvelde, P.; Van der Bruggen, B. Chem. Soc. Rev. 2019, 48, 2665.  doi: 10.1039/C8CS00919H

    26. [26]

      Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228.  doi: 10.1126/science.1202747

    27. [27]

      Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A. J. Am. Chem. Soc. 2008, 130, 11580.  doi: 10.1021/ja803247y

    28. [28]

      Sick, T.; Hufnagel, A. G.; Kampmann, J.; Kondofersky, I.; Calik, M.; Rotter, J. M.; Evans, A.; Doblinger, M.; Herbert, S.; Peters, K.; Bohm, D.; Knochel, P.; Medina, D. D.; Fattakhova-Rohlfing, D.; Bein, T. J. Am. Chem. Soc. 2018, 140, 2085.  doi: 10.1021/jacs.7b06081

    29. [29]

      Valentino, L.; Matsumoto, M.; Dichtel, W. R.; Marinas, B. J. Environ. Sci. Technol. 2017, 51, 14352.  doi: 10.1021/acs.est.7b04056

    30. [30]

      Feldblyum, J. I.; McCreery, C. H.; Andrews, S. C.; Kurosawa, T.; Santos, E. J. G.; Duong, V.; Fang, L.; Ayzner, A. L.; Bao, Z. N. Chem. Commun. 2015, 51, 13894.  doi: 10.1039/C5CC04679C

    31. [31]

      Dai, W. Y.; Shao, F.; Szczerbinski, J.; McCaffrey, R.; Zenobi, R.; Jin, Y. H.; Schluter, A. D.; Zhang, W. Angew. Chem., Int. Ed. 2016, 55, 213.  doi: 10.1002/anie.201508473

    32. [32]

      Shinde, D. B.; Sheng, G.; Li, X.; Ostwal, M.; Emwas, A. H.; Huang, K. W.; Lai, Z. P. J. Am. Chem. Soc. 2018, 140, 14342.  doi: 10.1021/jacs.8b08788

    33. [33]

      Sahabudeen, H.; Qi, H. Y.; Glatz, B. A.; Tranca, D.; Dong, R. H.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; Kaiser, U.; Fery, A.; Zheng, Z. K.; Feng, X. L. Nat. Commun. 2016, 7, 13461.  doi: 10.1038/ncomms13461

    34. [34]

      Dey, K.; Pal, M.; Rout, K. C.; Kunjattu, H. S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R. J. Am. Chem. Soc. 2017, 139, 13083.  doi: 10.1021/jacs.7b06640

    35. [35]

      Matsumoto, M.; Dasari, R. R.; Ji, W.; Feriante, C. H.; Parker, T. C.; Marder, S. R.; Dichtel, W. R. J. Am. Chem. Soc. 2017, 139, 4999.  doi: 10.1021/jacs.7b01240

    36. [36]

      Matsumoto, M.; Valentino, L.; Stiehl, G. M.; Balch, H. B.; Corcos, A. R.; Wang, F.; Ralph, D. C.; Marinas, B. J.; Dichtel, W. R. Chem 2018, 4, 308.  doi: 10.1016/j.chempr.2017.12.011

    37. [37]

      Zhou, D.; Tan, X. Y.; Wu, H. M.; Tian, L. H.; Li, M. Angew. Chem., Int. Ed. 2019, 58, 1376.  doi: 10.1002/anie.201811399

    38. [38]

      Zwaneveld, N. A. A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. J. Am. Chem. Soc. 2008, 130, 6678.  doi: 10.1021/ja800906f

    39. [39]

      Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470.  doi: 10.1021/ja403464h

    40. [40]

      Hao, Q.; Zhao, C.; Sun, B.; Lu, C.; Liu, J.; Liu, M.; Wan, L.-J.; Wang, D. J. Am. Chem. Soc. 2018, 140, 12152.  doi: 10.1021/jacs.8b07120

    41. [41]

      Li, G.; Zhang, K.; Tsuru, T. ACS Appl. Mater. Interfaces 2017, 9, 8433.  doi: 10.1021/acsami.6b15752

    42. [42]

      Burke, D. W.; Sun, C.; Castano, I.; Flanders, N. C.; Evans, A. M.; Vitaku, E.; McLeod, D. C.; Lambeth, R. H.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Angew. Chem., Int. Ed. 2019, 59, 2.

    43. [43]

      Medina, D. D.; Rotter, J. M.; Hu, Y. H.; Dogru, M.; Werner, V.; Auras, F.; Markiewicz, J. T.; Knochel, P.; Bein, T. J. Am. Chem. Soc. 2015, 137, 1016.  doi: 10.1021/ja510895m

    44. [44]

      Bisbey, R. P.; DeBlase, C. R.; Smith, B. J.; Dichtel, W. R. J. Am. Chem. Soc. 2016, 138, 11433.  doi: 10.1021/jacs.6b04669

    45. [45]

      Sasmal, H. S.; Aiyappa, H. B.; Bhange, S. N.; Karak, S.; Halder, A.; Kurungot, S.; Banerjee, R. Angew. Chem., Int. Ed. 2018, 57, 10894.  doi: 10.1002/anie.201804753

    46. [46]

      Kandambeth, S.; Biswal, B. P.; Chaudhari, H. D.; Rout, K. C.; Kunjattu, H. S.; Mitra, S.; Karak, S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R. Adv. Mater. 2017, 29, 1603945.  doi: 10.1002/adma.201603945

    47. [47]

      Halder, A.; Ghosh, M.; Khayum, M. A.; Bera, S.; Addicoat, M.; Sasmal, H. S.; Karak, S.; Kurungot, S.; Banerjee, R. J. Am. Chem. Soc. 2018, 140, 10941.  doi: 10.1021/jacs.8b06460

    48. [48]

      Yang, H.; Wu, H.; Yao, Z. Q.; Shi, B. B.; Xu, Z.; Cheng, X. X.; Pan, F. S.; Liu, G. H.; Jiang, Z. Y.; Cao, X. Z. J. Mater. Chem. A 2018, 6, 583.  doi: 10.1039/C7TA09596A

    49. [49]

      Duong, P. H. H.; Kuehl, V. A.; Mastorovich, B.; Hoberg, J. O.; Parkinson, B. A.; Li-Oakey, K. D. J. Membr. Sci. 2019, 574, 338.  doi: 10.1016/j.memsci.2018.12.042

    50. [50]

      Mulzer, C. R.; Shen, L.; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. ACS Central Sci. 2016, 2, 667.  doi: 10.1021/acscentsci.6b00220

    51. [51]

      Zhang, K.; He, Z.; Gupta, K. M.; Jiang, J. Environ. Sci.: Water Res. Technol. 2017, 3, 735.  doi: 10.1039/C7EW00074J

    52. [52]

      Gadwal, I.; Sheng, G.; Thankamony, R. L.; Liu, Y.; Li, H.; Lai, Z. ACS Appl. Mater. Interfaces 2018, 10, 12295.  doi: 10.1021/acsami.7b19450

    53. [53]

      Wang, C. B.; Li, Z. Y.; Chen, J. X.; Li, Z.; Yin, Y. H.; Cao, L.; Zhong, Y. L.; Wu, H. J. Membr. Sci. 2017, 523, 273.  doi: 10.1016/j.memsci.2016.09.055

    54. [54]

      Wu, M. Y.; Yuan, J. Q.; Wu, H.; Su, Y. L.; Yang, H.; You, X. D.; Zhang, R. N.; He, X. Y.; Khan, N. A.; Kasher, R.; Jiang, Z. Y. J. Membr. Sci. 2019, 576, 131.  doi: 10.1016/j.memsci.2019.01.040

    55. [55]

      Kuehl, V. A.; Yin, J.; Duong, P. H. H.; Mastorovich, B.; Newell, B.; Li-Oakey, K. D.; Parkinson, B. A.; Hoberg, J. O. J. Am. Chem. Soc. 2018, 140, 18200.  doi: 10.1021/jacs.8b11482

    56. [56]

      Fan, H. W.; Gu, J. H.; Meng, H.; Knebel, A.; Caro, J. Angew. Chem., Int. Ed. 2018, 57, 4083.
       

    57. [57]

      Wang, R.; Shi, X. S.; Xiao, A. K.; Zhou, W.; Wang, Y. J. Membr. Sci. 2018, 566, 197.  doi: 10.1016/j.memsci.2018.08.044

    58. [58]

      Pan, F. S.; Guo, W. X.; Su, Y. L.; Khan, N. A.; Yang, H.; Jiang, Z. Y. Sep. Purif. Technol. 2019, 215, 582.  doi: 10.1016/j.seppur.2019.01.064

    59. [59]

      Zhang, W.; Zhang, L.; Zhao, H.; Li, B.; Ma, H. J. Mater. Chem. A 2018, 6, 13331.  doi: 10.1039/C8TA04178D

    60. [60]

      Liu, C. H.; Park, E.; Jin, Y. H.; Liu, J.; Yu, Y. X.; Zhang, W.; Lei, S. B.; Hu, W. P. Angew. Chem., Int. Ed. 2018, 57, 8984.  doi: 10.1002/anie.201803937

    61. [61]

      Xu, L.; Xu, J.; Shan, B.; Wang, X.; Gao, C. J. Membr. Sci. 2017, 526, 355.  doi: 10.1016/j.memsci.2016.12.039

    62. [62]

      Yang, H.; Cheng, X. P.; Cheng, X. X.; Pan, F. S.; Wu, H.; Liu, G. H.; Song, Y. M.; Cao, X. Z.; Jiang, Z. Y. J. Membr. Sci. 2018, 565, 331.  doi: 10.1016/j.memsci.2018.08.043

    63. [63]

      Fan, H. W.; Xie, Y. F.; Li, J. C.; Zhang, L.; Zheng, Q. Y.; Zhang, G. J. J. Mater. Chem. A 2018, 6, 17602.  doi: 10.1039/C8TA06902F

    64. [64]

      Shao, P. P.; Li, J.; Chen, F.; Ma, L.; Li, Q. B.; Zhang, M. X.; Zhou, J. W.; Yin, A. X.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2018, 57, 16501.  doi: 10.1002/anie.201811250

    65. [65]

      Li, Y.; Wu, Q.; Guo, X.; Zhang, M.; Chen, B.; Wei, G.; Li, X.; Li, X.; Li, S.; Ma, L. Nat. Commun. 2020, 11, 599.  doi: 10.1038/s41467-019-14056-7

    66. [66]

      Ying, Y.; Tong, M.; Ning, S.; Ravi, S. K.; Peh, S. B.; Tan, S. C.; Pennycook, S. J.; Zhao, D. J. Am. Chem. Soc. 2020, 142, 4472.  doi: 10.1021/jacs.9b13825

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    11. [11]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(77)
  • Abstract views(2518)
  • HTML views(577)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return