Citation: Wang Xiling, Chen Jie, Ma Nana, Cong Zhiqi. Selective Hydroxylation of Alkanes Catalyzed by Cytochrome P450 Enzymes[J]. Acta Chimica Sinica, ;2020, 78(6): 490-503. doi: 10.6023/A20030086 shu

Selective Hydroxylation of Alkanes Catalyzed by Cytochrome P450 Enzymes

  • Corresponding author: Cong Zhiqi, congzq@qibebt.ac.cn
  • Received Date: 24 March 2020
    Available Online: 9 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21778060, 21977104) and the Qingdao Innovative Leading Talent Project (No. 18-1-2-9-zhc)the Qingdao Innovative Leading Talent Project 18-1-2-9-zhcthe National Natural Science Foundation of China 21778060the National Natural Science Foundation of China 21977104

Figures(10)

  • The selective oxyfunctionalization of unactivated C-H bonds is one of long-standing issues and current topics in synthetic chemistry. One of the major synthetic targets for these reactions is the direct and selective hydroxylation of alkanes to alcohols, however, which faces many severe challenges in controlling chemoselectivity, regioselectivity and stereoselectivity. In nature, the oxidative metalloenzymes is capable of selectively catalyzing the insertion of oxygen into inert C-H bonds of alkanes, such as methane monooxygenases (MMO), soluble butane monooxygenases (sBMO), fungal peroxygenases and Cytochrome P450 monooxygenases (P450s). Among them, P450s that catalyze a variety of oxygenation reactions have attracted special attentions because of some intrinsic advantages. P450s are widely distributed in plants, animals and microorganisms and over 41000 sequences of P450 genes have been named from various databases, which enhances the potentials of P450s in developing the oxidative biocatalysts. In addition, compared with MMOs, P450s that have smaller molecule weight (≈45 kDa) are simple and amenable to recombinant expression and engineering. Herein, we reviewed the recent progress of alkanes hydroxylation by P450 enzymes either in its natural forms or engineered variants, as well as chemical activated systems. The related background and the catalytic mechanism of P450s for alkanes hydroxylation were firstly discussed. The representative examples by natural P450s mainly from CYP153, CYP52 and other P450 families were then outlined. The strategies of rational design and directed evolution on P450s engineering were then summarized focusing on the native/non-native alkane substrates. Three unusual strategies, including substrate engineering, decoy molecule, and dual-functional small molecule co-catalysis, were also discussed on their applications for activating P450s to hydroxylate non-native small alkanes. Finally, we perspective the challenges and solutions that faced by P450 enzymes in the development of new biocatalytic systems toward selective hydroxylation of alkanes. In conclusion, cytochrome P450 enzymes in both of their native and modified form are promising biocatalysts for alkanes hydroxylation and need further be investigated to gain the practical industrial applications.
  • 加载中
    1. [1]

      Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, Routledge, New York, 2003.

    2. [2]

      Hashiguchi, B. G.; Konnick, M. M.; Bischof, S. M.; Gustafson, S. J.; Devarajan, D.; Gunsalus, N.; Daniel H.; Ess, D. H.; Periana, R. A. Science 2014, 343, 1232.  doi: 10.1126/science.1249357

    3. [3]

      Soussan, L.; Pen, N.; Belleville, M. P.; Marcano, J. S.; Jeanjean, D. P. J. Biotechnol. 2016, 222, 117.  doi: 10.1016/j.jbiotec.2016.02.007

    4. [4]

      Sirajuddin, S.; Rosenzweig, A. C. Biochemistry 2015, 54, 2283.  doi: 10.1021/acs.biochem.5b00198

    5. [5]

      Cahalan, E.; Ernfors, M.; Müller, C.; Devaney, D.; Laughlin, R. J.; Watson, C. J.; Hennessy, D.; Grant, J.; Khalil, M. I.; McGeough, K. L.; Richards, K. G. Agric. Ecosyst. Environ. 2015, 199, 339.  doi: 10.1016/j.agee.2014.09.008

    6. [6]

      Van Beilen, J. B.; Wubbolts, M. G.; Witholt, B. Biodegradation 1994, 5, 161.  doi: 10.1007/BF00696457

    7. [7]

      Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism, and Biochemistry, Routledge, New York, 2005.

    8. [8]

    9. [9]

      Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M. D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D. R.; Teoh, K. H.; Reed, D. W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K. W.; Fickes, S.; Galazzo, J.; Gaucher, S. P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L. F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P. S.; Keasling, J. D.; Reiling, K. K.; Renninger, N. S.; Newman, J. D. Nature 2013, 496, 528.  doi: 10.1038/nature12051

    10. [10]

    11. [11]

      (a) Qi, F.; Lei, C.; Li, F.; Zhang, X.; Wang, J.; Zhang, W.; Fan, Z.; Li, W.; Tang, G.; Xiao, Y.; Zhao, G.; Li, S. Nat. Commun. 2018, 9, 2342. (b) Sun, W.; Xue, H.; Liu, H.; Lv, B.; Yu, Y.; Wang, Y.; Huang, M.; Li, C. ACS Catal. 2020, 10, 4253. (c) Tian, X.; Ruana, J.-X.; Huang, J.-Q.; Yang, C.-Q.; Fang, X.; Chen, Z.-W.; Hong, H.; Wang, L.-J.; Mao, Y.-B.; Lu, S.; Zhang, T.-Z.; Chen, X.-Y. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E5410. (d) Wang, W.-F.; Xiao, H.; Zhong, J.-J. Biotechnol. Bioeng. 2018, 115, 1842.

    12. [12]

      Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013, 339, 307.  doi: 10.1126/science.1231434

    13. [13]

      McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 9309.  doi: 10.1002/anie.201304401

    14. [14]

      Kan, S.; Huang, X.; Gumulya, Y. Nature 2017, 552, 132.  doi: 10.1038/nature24996

    15. [15]

      Haynes, C. A.; Gonzalez, R. Nat. Chem. Biol. 2014, 10, 331.  doi: 10.1038/nchembio.1509

    16. [16]

      Munz, D.; Strassner, T. Inorg. Chem. 2015, 54, 5043.  doi: 10.1021/ic502515x

    17. [17]

      Bordeaux, M.; Galarneau, A.; Drone, J. Angew. Chem., Int. Ed. 2012, 51, 10712.  doi: 10.1002/anie.201203280

    18. [18]

      Lawton, T. J.; Rosenzweig, A. C. J. Am. Chem. Soc. 2016, 138, 9327.  doi: 10.1021/jacs.6b04568

    19. [19]

      Nelson, D. R. Biochim. Biophys. Acta. Proteins Proteom. 2018, 1866, 141.  doi: 10.1016/j.bbapap.2017.05.003

    20. [20]

      (a) Poulos, T. L.; Finzel, B. C.; Howard, A. J. J. Mol. Biol. 1987, 195, 687. (b) Tripathi, S.; Li, H.; Poulos, T. L. Science 2013, 340, 1227.

    21. [21]

      Ravichandran, K. G.; Boddupalli, S. S.; Hasemann, C. A.; Peterson, J. A.; Deisenhofer, J. Science 1993, 261, 731.  doi: 10.1126/science.8342039

    22. [22]

      Haines, D. C.; Tomchick, D. R.; Machius, M.; Peterson, J. A. Biochemistry 2001, 40, 13456.  doi: 10.1021/bi011197q

    23. [23]

      (a) Rittle, J.; Green, M. T. Science 2010, 330, 933. (b) Li, X.-X.; Postils, V.; Sun, W.; Faponle, A. S.; Solà, M.; Wang, Y.; Nam, W.; de Visser, S. P. Chem. Eur. J. 2017, 23, 6406.

    24. [24]

      Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, B. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.  doi: 10.1126/science.287.5458.1615

    25. [25]

      Whitehouse, C. J.; Bell, S. G.; Wong, L. L. Chem. Soc. Rev. 2012, 41, 1218.  doi: 10.1039/C1CS15192D

    26. [26]

      Xu, F.; Bell, S. G.; Lednik, J.; Insley, A.; Rao, Z.; Wong, L. L. Angew. Chem., Int. Ed. 2005, 44, 4029.  doi: 10.1002/anie.200462630

    27. [27]

      Fasan, R.; Chen, M. M.; Crook, N. C.; Arnold, F. H. Angew. Chem., Int. Ed. 2007, 46, 8414.  doi: 10.1002/anie.200702616

    28. [28]

      Chen, J.; Kong, F.; Ma, N.; Zhao, P.; Liu, C.; Wang, X.; Cong, Z. ACS Catal. 2019, 9, 7350.  doi: 10.1021/acscatal.9b02507

    29. [29]

      (a) Scheps, D.; Malca, S. H.; Hoffmann, H.; Nestl, B. M.; Hauer, B. Org. Biomol. Chem. 2011, 9, 6727. (b) Funhoff, E. G.; Bauer, U.; García-Rubio, I.; Witholt, B.; Van Beilen, J. B. J. Bacteriol. 2006, 5220. (c) Bordeaux, M.; Girval, D.; Rullaud, R.; Subileau, M.; Dubreucq, E.; Drone, J. Appl. Microbiol. Biot. 2014, 98, 6275.

    30. [30]

      (a) Hsieh, S.-C.; Wang, J.-H.; Lai, Y.-C.; Su, C.-Y.; Lee, K.-T. Appl. Environ. Microbiol. 2018, 84, e01806-17. (b) Kochius, S.; Marwijk, J.; Ebrecht, A. C.; Opperman, D. J.; Smit, M. S. Catalysts 2018, 8, 531.

    31. [31]

      Nie, Y.; Liang, J.-L.; Fang, H.; Tang, Y.-Q.; Wu, X.-L. Appl. Microbiol. Biotechnol. 2014, 98, 163.  doi: 10.1007/s00253-013-4821-1

    32. [32]

      Zimmer, T.; Ohkuma, M.; Ohta, A.; Takagi, M.; Schunck, W. H. Biochem. Biophys. Res. Commun. 1996, 224, 784.  doi: 10.1006/bbrc.1996.1100

    33. [33]

      Hanano, A.; Shaban, M.; Almousally, I.; Al-Ktaifani, M. Chemosphere 2015, 135, 418.  doi: 10.1016/j.chemosphere.2014.11.011

    34. [34]

      Craft, D. L.; Madduri, K. M.; Eshoo, M.; Wilson, C. R. Appl. Environ. Microbiol. 2003, 5983.
       

    35. [35]

      Van Bogaert, I. N. A.; Demey1, M.; Develter, D.; Soetaert, W.; Vandamme, E. J. FEMS Yeast Res. 2009, 9, 87.  doi: 10.1111/j.1567-1364.2008.00454.x

    36. [36]

      (a) Lida, T.; Sumita, T.; Ohta, A.; Takagi, M. Yeast 2000, 16, 1077. (b) Panwar, S. L.; Krishnamurthy, S.; Gupta, V.; Alarco, A. M.; Raymond, M.; Sanglard, D.; Prasad, R. Yeast 2001, 18, 1117. (c) Carratore, R. D.; Gervasi, P. G.; Contini, M. P.; Beffy, P.; Maserti, B. E.; Giovannetti, G.; Brondolo, A.; Longo, V. Biotechnol. Lett. 2011, 33, 1201.

    37. [37]

      Trippe, K. M.; Wolpert, T. J.; Hyman, M. R.; Ciuffetti, L. M. Biodegradation 2014, 25, 137.  doi: 10.1007/s10532-013-9646-1

    38. [38]

      Park, H.; Park, G.; Jeon, W.; Ahn, J.-O.; Yang, Y.-H.; Choi, K.-Y. Biotechnol. Adv. 2020, DOI: 10.1016/j.biotechadv.2020.107504.  doi: 10.1016/j.biotechadv.2020.107504

    39. [39]

      (a) Von Bühler, C. J.; Urlacher, V. B. Chem. Commun. 2014, 50, 4089. (b) Tieves, F.; Erenburg, I. N.; Mahmoud, O.; Urlacher, V. B. Biotechnol. Bioeng. 2016, 113, 1845.

    40. [40]

      Syed, K.; Porollo, A.; Lam, Y. W. Appl. Environ. Microbiol. 2013, 79, 2692.  doi: 10.1128/AEM.03767-12

    41. [41]

      (a) Greer, S.; Wen, M.; Bird, D.; Wu, X.; Samuels, L.; Kunst, L.; Jetter, R. Plant Physiol. 2007, 145, 653. (b) Zhang, D.; Yang, H.; Wang, X.; Qiu, Y.; Tian, L.; Qi, X.; Qu, L. Q. New Phytol. 2020, 225, 2094.

    42. [42]

      Minerdi, D.; Sadeghi, S. J.; Nardo, G. D.; Rua, F.; Castrignanò, S.; Allegra, P.; Gilardi, G. Mol. Microbiol. 2015, 95, 539.  doi: 10.1111/mmi.12883

    43. [43]

      Fisher, M. B.; Zheng, Y. M.; Rettie, A. E. Biochem. Biophys. Res. Commun. 1998, 248, 352.  doi: 10.1006/bbrc.1998.8842

    44. [44]

      (a) Maseme, M. J.; Pennec, A.; Marwijk, J.; Opperman, D. J.; Smit, M. S. Angew. Chem., Int. Ed. 2020, DOI: 10.1002/anie.202001055. (b) Manning, J.; Tavanti, M.; Porter, J.; Kress, N.; DeVisser, S.; Turner, N.; Flitsch, S. Angew. Chem., Int. Ed. 2019, 58, 5668. (c) Sakai, K.; Matsuzaki, F.; Wise, L.; Sakai, Y.; Jindou, S.; Ichinose, H.; Takaya, N.; Kato, M.; Wariishi, H.; Shimizu, M. Appl. Environ. Microbiol. 2018, 84, e01091-18.

    45. [45]

      (a) Johnston, J. B.; Kells, P. M.; Podust, L. M.; Ortiz de Montellano, P. R. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20687. (b) Salamanca, D.; Karande, R.; Schmid, A.; Dobslaw, D. Appl. Microbiol. Biotechnol. 2015, 99, 6889.

    46. [46]

      (a) Yin, Y.-C.; Yu, H.-L.; Luan, Z.-J.; Li, R.-J.; Ouyang, P.-F.; Liu, J.; Xu, J.-H. ChemBioChem 2014, 15, 2443. (b) Xie, L.; Chen, K.; Cui, H.; Wan, N.; Cui, B.; Han, W.; Chen, Y. ChemBioChem 2020, 20, DOI: 10.1002/cbic.201900691.

    47. [47]

      Bell, S. G.; Yang, W.; Dale, A.; Zhou, W.; Wong, L. L. Appl. Microbiol. Biotechnol. 2013, 97, 3979.  doi: 10.1007/s00253-012-4278-7

    48. [48]

      Shoji, O.; Aiba, Y.; Watanabe, Y. Acc. Chem. Res. 2019, 52, 925.  doi: 10.1021/acs.accounts.8b00651

    49. [49]

      Dus, K.; Katagiri, M.; Yu, C. A.; Erbes, D. L.; Gunsalus, I. C. Biochem. Biophys. Res. Commun. 1970, 40, 1423.  doi: 10.1016/0006-291X(70)90026-4

    50. [50]

      Stevenson, J. A.; Westlake, A. C. G.; Whittock, C.; Wong, L. L. J. Am. Chem. Soc. 1996, 118, 12846.  doi: 10.1021/ja963087q

    51. [51]

      Stevenson, J. A.; Bearpark, J. K.; Wong, L. L. New J. Chem. 1998, 22, 551.  doi: 10.1039/a801637b

    52. [52]

      Bell, S. G.; Stevenson, J. A.; Boyd, H. D.; Campbell, S.; Riddle, A. D.; Orton, E. L.; Wong, L. L. Chem. Commun. 2002, 490.

    53. [53]

      Bell, S. G.; Orton, E. L.; Boyd, H. D.; Stevenson, J. A.; Riddle, A. D.; Campbell, S.; Wong, L. L. Dalton Trans. 2003, 2133.

    54. [54]

      Poulos, T. L.; Finzel, B. C.; Howard, A. J. Biochemistry 1986, 25, 5314.  doi: 10.1021/bi00366a049

    55. [55]

      Miura, Y.; Fulco, A. J. Biochim. Biophys. Acta 1975, 388, 305.  doi: 10.1016/0005-2760(75)90089-2

    56. [56]

      Adam, W.; Lukacs, Z.; Saha-Möller, C. R.; Weckerle, B.; Schreier, P. Eur. J. Org. Chem. 2000, 16, 2923.

    57. [57]

      Appel, D.; Lutz, S.; Fischer, P.; Schwaneberg, U.; Schmid, R. D. J. Biotechnol. 2001, 88, 167.  doi: 10.1016/S0168-1656(01)00249-8

    58. [58]

      Glieder, A.; Farinas, E. T.; Arnold, F. H. Nat. Biotechnol. 2002, 20, 1135.  doi: 10.1038/nbt744

    59. [59]

      Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem. Soc. 2003, 125, 13442.  doi: 10.1021/ja0303790

    60. [60]

      Meinhold, P.; Peters, M. W.; Chen, M. M.; Takahashi, K.; Arnold, F. H. ChemBioChem 2005, 6, 1765.  doi: 10.1002/cbic.200500261

    61. [61]

      Farinas, E. T.; Schwaneberg, U.; Gliede, A.; Arnold, F. H. Adv. Synth. Catal. 2001, 343, 601.  doi: 10.1002/1615-4169(200108)343:6/7<601::AID-ADSC601>3.0.CO;2-9

    62. [62]

      Weber, E.; Seifert, A.; Antonovici, M.; Geinitz, C.; Pleiss, J.; Urlacher, V. B. Chem. Commun. 2011, 47, 944.  doi: 10.1039/C0CC02924F

    63. [63]

      Staudt, S.; Burda, E.; Giese, C.; Müller, C. A.; Marienhagen, J.; Schwaneberg, U.; Hummel, W.; Drauz, K.; Gröger, H. Angew. Chem., Int. Ed. 2013, 52, 2359.  doi: 10.1002/anie.201204464

    64. [64]

      Müller, C. A.; Akkapurathu, B.; Winkler, T.; Svenja Staudt, S.; Hummel, W.; Gröger, H.; Schwaneberg, U. Adv. Synth. Catal. 2013, 355, 1787.  doi: 10.1002/adsc.201300143

    65. [65]

      Pennec, A.; Hoomann, F.; Smit, M. S.; Opperman, D. J. ChemCatChem 2015, 7, 236.  doi: 10.1002/cctc.201402835

    66. [66]

      Roiban, G. D.; Reetz, M. T. Chem. Commun. 2015, 51, 2208.  doi: 10.1039/C4CC09218J

    67. [67]

      Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.  doi: 10.1002/anie.201310892

    68. [68]

      Zhang, W.; Tang, W.; Wang, Z.; Li, Z. Adv. Synth. Catal. 2010, 352, 3380.  doi: 10.1002/adsc.201000266

    69. [69]

      Chang, D. L.; Feiten, H. J.; Witholt, B.; Li, Z. Tetrahedron: Asymmetry 2002, 13, 2141.  doi: 10.1016/S0957-4166(02)00534-7

    70. [70]

      Chang, D. L.; Feiten, H. J.; Engesser, K. H.; Van Beilen, J. B.; Witholt, B.; Li, Z. Org. Lett. 2002, 4, 1859.  doi: 10.1021/ol025829s

    71. [71]

      Reetz, M. T. Angew. Chem., Int. Ed. 2011, 50, 138.  doi: 10.1002/anie.201000826

    72. [72]

      Yang, Y.; Liu, J.; Li, Z. Angew. Chem., Int. Ed. 2014, 53, 3120.  doi: 10.1002/anie.201311091

    73. [73]

      Landwehr, M.; Hochrein, L.; Otey, C. R.; Kasrayan, A.; Backvall, J. E.; Arnold, F. H. J. Am. Chem. Soc. 2006, 128, 6058.  doi: 10.1021/ja061261x

    74. [74]

      Li, S.; Chaulagain, M. R.; Knauff, A. R.; Podust, L. M.; Montgomery, J.; Sherman, D. H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18463.  doi: 10.1073/pnas.0907203106

    75. [75]

      Narayan, A. R. H.; Jiménez-Osés, G.; Liu, P.; Negretti, S.; Zhao, W.; Gilbert, M. M.; Ramabhadran, R. O., Yand, Y.-F.; Furan, L. R.; Li, Z.; Podust, L. M.; Montgomery, J.; Houk, K. N.; Sherman, D. H. Nat. Chem. 2015, 7, 653.  doi: 10.1038/nchem.2285

    76. [76]

      Ma, N.; Chen, Z.; Chen, J.; Wang, C.; Zhou, H.; Yao, L.; Shoji, O.; Watanabe, Y.; Cong, Z. Angew. Chem., Int. Ed. 2018, 57, 7628.  doi: 10.1002/anie.201801592

    77. [77]

      Xu, J.; Wang, C.; Cong, Z. Chem. Eur. J. 2019, 25, 6853.  doi: 10.1002/chem.201806383

    78. [78]

      Shoji, O.; Yanagisawa, S.; Stanfield, J. K.; Suzuki, K.; Cong, Z.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. Angew. Chem., Int. Ed. 2017, 56, 10324.  doi: 10.1002/anie.201703461

    79. [79]

      Cong, Z.; Shoji, O.; Kasai, C.; Kawakami, N.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. ACS Catal. 2015, 5, 150.  doi: 10.1021/cs501592f

    80. [80]

      Zhang, W.; Ma, M.; Hollmann, F. J. Am. Chem. Soc. 2019, 141, 3116.  doi: 10.1021/jacs.8b12282

    81. [81]

      Demming, R. M.; Hammer, S. C.; Nestl, B. M.; Gergel, S.; Fademrecht, S.; Pleiss, J.; Hauer, B. Angew. Chem., Int. Ed. 2019, 58, 173.  doi: 10.1002/anie.201810005

    82. [82]

      (a) Wang, Y.; Lan, D.; Durrani, R.; Hollmann, F. Curr. Opin. Chem. Biol. 2017, 37, 1. (b) Piontek, K.; Strittmatter, E.; Ullrich, R.; Gröbe, G.; Pecyna, M. J.; Kluge, M.; Scheibner, K.; Hofrichter, M.; Plattner, D. A. J. Biol. Chem. 2013, 288, 34767.

    83. [83]

      Wang, X.; Chen, J.; Chen, Z.; Zhou, H.; Cong, Z. Biotic Resources 2017, 39, 75 (in Chinese).
       

    84. [84]

      Chen, Z.; Chen, J.; Ma, N.; Zhou, H.; Cong, Z. J. Porphyr. Phthalocya. 2018, 22, 831.  doi: 10.1142/S108842461850061X

    85. [85]

      Jiang, Y.; Wang, C.; Ma, N.; Chen, J.; Liu, C.; Wang, F.; Xu, J.; Cong, Z. Catal. Sci. Technol. 2020, 10, 1219.  doi: 10.1039/D0CY00241K

    86. [86]

      Kawakami, N.; Shoji, O.; Watanabe, Y. Angew. Chem., Int. Ed. 2011, 50, 5315.  doi: 10.1002/anie.201007975

    87. [87]

      (a) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Manfred, T.; Reetz, M. T. Angew. Chem., Int. Ed. 2011, 50, 2720. (b) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Manfred, T.; Reetz, M. T. Angew. Chem., Int. Ed. 2013, 52, 13503.

    88. [88]

      Kawakami, N.; Shoji, O.; Watanabe, Y. Chem. Sci. 2013, 4, 2344.  doi: 10.1039/c3sc50378j

    89. [89]

      Ariyasu, S.; Kodama, Y.; Kasai, C.; Cong, Z.; Stanfield, J. K.; Aiba, Y.; Watanabe, Y.; Shoji, O. ChemCatChem 2019, 11, 4709.  doi: 10.1002/cctc.201901323

    90. [90]

      Kawakami, N.; Cong, Z.; Shoji, O.; Watanabe, Y. J. Porphyr. Phthalocya. 2015, 19, 329.  doi: 10.1142/S1088424615500145

    91. [91]

      Munday, S. D.; Shoji, O.; Watanabe, Y.; Wong, L. L.; Bell, S. G. Chem. Commun. 2016, 52, 1036.  doi: 10.1039/C5CC09247G

    92. [92]

      Peter, S.; Kinne, M.; Wang, X.; Ullrich, R.; Kayser, G.; Groves, J. T. FEBS J. 2011, 278, 3667.  doi: 10.1111/j.1742-4658.2011.08285.x

    93. [93]

      Cooley, R. B.; Dubbels, B. L.; Sayavedra-Soto, L. A.; Bottomley, P. J.; Arp, D. Microbiology 2009, 155, 2086.  doi: 10.1099/mic.0.028175-0

    94. [94]

      Chen, M.; Coelho, P. S.; Arnold, F. H. Adv. Synth. Catal. 2012, 354, 964.  doi: 10.1002/adsc.201100833

    95. [95]

      Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.  doi: 10.1038/417507a

    96. [96]

      Lee, J. H.; Nam, D. H.; Lee, S. H.; Park, J. H.; Park, S. J.; Lee, S. H.; Park, C. B.; Jeong, K. J. Bioconjugate Chem. 2014, 25, 2101.  doi: 10.1021/bc500404j

    97. [97]

      Ge, J.; Lei, J.; Zare, R. N. Nat. Nanotechnol. 2012, 7, 428.  doi: 10.1038/nnano.2012.80

    98. [98]

      Khatri, Y.; Hannemann, F.; Ewen, K. M.; Pistorius, D.; Perlova, O.; Kagawa, N.; Brachmann, A. O.; Müller, R.; Bernhardt, R. Chem. Biol. 2010, 17, 1295.  doi: 10.1016/j.chembiol.2010.10.010

    99. [99]

      Lee, J. H.; Nam, D. H.; Lee, S. H.; Park, J. H.; Park, C. B.; Jeong, K. J. J. Ind. Eng. Chem. 2016, 33, 28.  doi: 10.1016/j.jiec.2015.10.002

    100. [100]

      Karande, R.; Schmid, A.; Buehler, K. Org. Process Res. Dev. 2016, 20, 361.  doi: 10.1021/acs.oprd.5b00352

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(147)
  • Abstract views(3625)
  • HTML views(1241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return