Citation: Wang Xiling, Chen Jie, Ma Nana, Cong Zhiqi. Selective Hydroxylation of Alkanes Catalyzed by Cytochrome P450 Enzymes[J]. Acta Chimica Sinica, ;2020, 78(6): 490-503. doi: 10.6023/A20030086 shu

Selective Hydroxylation of Alkanes Catalyzed by Cytochrome P450 Enzymes

  • Corresponding author: Cong Zhiqi, congzq@qibebt.ac.cn
  • Received Date: 24 March 2020
    Available Online: 9 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21778060, 21977104) and the Qingdao Innovative Leading Talent Project (No. 18-1-2-9-zhc)the Qingdao Innovative Leading Talent Project 18-1-2-9-zhcthe National Natural Science Foundation of China 21778060the National Natural Science Foundation of China 21977104

Figures(10)

  • The selective oxyfunctionalization of unactivated C-H bonds is one of long-standing issues and current topics in synthetic chemistry. One of the major synthetic targets for these reactions is the direct and selective hydroxylation of alkanes to alcohols, however, which faces many severe challenges in controlling chemoselectivity, regioselectivity and stereoselectivity. In nature, the oxidative metalloenzymes is capable of selectively catalyzing the insertion of oxygen into inert C-H bonds of alkanes, such as methane monooxygenases (MMO), soluble butane monooxygenases (sBMO), fungal peroxygenases and Cytochrome P450 monooxygenases (P450s). Among them, P450s that catalyze a variety of oxygenation reactions have attracted special attentions because of some intrinsic advantages. P450s are widely distributed in plants, animals and microorganisms and over 41000 sequences of P450 genes have been named from various databases, which enhances the potentials of P450s in developing the oxidative biocatalysts. In addition, compared with MMOs, P450s that have smaller molecule weight (≈45 kDa) are simple and amenable to recombinant expression and engineering. Herein, we reviewed the recent progress of alkanes hydroxylation by P450 enzymes either in its natural forms or engineered variants, as well as chemical activated systems. The related background and the catalytic mechanism of P450s for alkanes hydroxylation were firstly discussed. The representative examples by natural P450s mainly from CYP153, CYP52 and other P450 families were then outlined. The strategies of rational design and directed evolution on P450s engineering were then summarized focusing on the native/non-native alkane substrates. Three unusual strategies, including substrate engineering, decoy molecule, and dual-functional small molecule co-catalysis, were also discussed on their applications for activating P450s to hydroxylate non-native small alkanes. Finally, we perspective the challenges and solutions that faced by P450 enzymes in the development of new biocatalytic systems toward selective hydroxylation of alkanes. In conclusion, cytochrome P450 enzymes in both of their native and modified form are promising biocatalysts for alkanes hydroxylation and need further be investigated to gain the practical industrial applications.
  • 加载中
    1. [1]

      Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, Routledge, New York, 2003.

    2. [2]

      Hashiguchi, B. G.; Konnick, M. M.; Bischof, S. M.; Gustafson, S. J.; Devarajan, D.; Gunsalus, N.; Daniel H.; Ess, D. H.; Periana, R. A. Science 2014, 343, 1232.  doi: 10.1126/science.1249357

    3. [3]

      Soussan, L.; Pen, N.; Belleville, M. P.; Marcano, J. S.; Jeanjean, D. P. J. Biotechnol. 2016, 222, 117.  doi: 10.1016/j.jbiotec.2016.02.007

    4. [4]

      Sirajuddin, S.; Rosenzweig, A. C. Biochemistry 2015, 54, 2283.  doi: 10.1021/acs.biochem.5b00198

    5. [5]

      Cahalan, E.; Ernfors, M.; Müller, C.; Devaney, D.; Laughlin, R. J.; Watson, C. J.; Hennessy, D.; Grant, J.; Khalil, M. I.; McGeough, K. L.; Richards, K. G. Agric. Ecosyst. Environ. 2015, 199, 339.  doi: 10.1016/j.agee.2014.09.008

    6. [6]

      Van Beilen, J. B.; Wubbolts, M. G.; Witholt, B. Biodegradation 1994, 5, 161.  doi: 10.1007/BF00696457

    7. [7]

      Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism, and Biochemistry, Routledge, New York, 2005.

    8. [8]

    9. [9]

      Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M. D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D. R.; Teoh, K. H.; Reed, D. W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K. W.; Fickes, S.; Galazzo, J.; Gaucher, S. P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L. F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P. S.; Keasling, J. D.; Reiling, K. K.; Renninger, N. S.; Newman, J. D. Nature 2013, 496, 528.  doi: 10.1038/nature12051

    10. [10]

    11. [11]

      (a) Qi, F.; Lei, C.; Li, F.; Zhang, X.; Wang, J.; Zhang, W.; Fan, Z.; Li, W.; Tang, G.; Xiao, Y.; Zhao, G.; Li, S. Nat. Commun. 2018, 9, 2342. (b) Sun, W.; Xue, H.; Liu, H.; Lv, B.; Yu, Y.; Wang, Y.; Huang, M.; Li, C. ACS Catal. 2020, 10, 4253. (c) Tian, X.; Ruana, J.-X.; Huang, J.-Q.; Yang, C.-Q.; Fang, X.; Chen, Z.-W.; Hong, H.; Wang, L.-J.; Mao, Y.-B.; Lu, S.; Zhang, T.-Z.; Chen, X.-Y. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E5410. (d) Wang, W.-F.; Xiao, H.; Zhong, J.-J. Biotechnol. Bioeng. 2018, 115, 1842.

    12. [12]

      Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013, 339, 307.  doi: 10.1126/science.1231434

    13. [13]

      McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 9309.  doi: 10.1002/anie.201304401

    14. [14]

      Kan, S.; Huang, X.; Gumulya, Y. Nature 2017, 552, 132.  doi: 10.1038/nature24996

    15. [15]

      Haynes, C. A.; Gonzalez, R. Nat. Chem. Biol. 2014, 10, 331.  doi: 10.1038/nchembio.1509

    16. [16]

      Munz, D.; Strassner, T. Inorg. Chem. 2015, 54, 5043.  doi: 10.1021/ic502515x

    17. [17]

      Bordeaux, M.; Galarneau, A.; Drone, J. Angew. Chem., Int. Ed. 2012, 51, 10712.  doi: 10.1002/anie.201203280

    18. [18]

      Lawton, T. J.; Rosenzweig, A. C. J. Am. Chem. Soc. 2016, 138, 9327.  doi: 10.1021/jacs.6b04568

    19. [19]

      Nelson, D. R. Biochim. Biophys. Acta. Proteins Proteom. 2018, 1866, 141.  doi: 10.1016/j.bbapap.2017.05.003

    20. [20]

      (a) Poulos, T. L.; Finzel, B. C.; Howard, A. J. J. Mol. Biol. 1987, 195, 687. (b) Tripathi, S.; Li, H.; Poulos, T. L. Science 2013, 340, 1227.

    21. [21]

      Ravichandran, K. G.; Boddupalli, S. S.; Hasemann, C. A.; Peterson, J. A.; Deisenhofer, J. Science 1993, 261, 731.  doi: 10.1126/science.8342039

    22. [22]

      Haines, D. C.; Tomchick, D. R.; Machius, M.; Peterson, J. A. Biochemistry 2001, 40, 13456.  doi: 10.1021/bi011197q

    23. [23]

      (a) Rittle, J.; Green, M. T. Science 2010, 330, 933. (b) Li, X.-X.; Postils, V.; Sun, W.; Faponle, A. S.; Solà, M.; Wang, Y.; Nam, W.; de Visser, S. P. Chem. Eur. J. 2017, 23, 6406.

    24. [24]

      Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, B. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.  doi: 10.1126/science.287.5458.1615

    25. [25]

      Whitehouse, C. J.; Bell, S. G.; Wong, L. L. Chem. Soc. Rev. 2012, 41, 1218.  doi: 10.1039/C1CS15192D

    26. [26]

      Xu, F.; Bell, S. G.; Lednik, J.; Insley, A.; Rao, Z.; Wong, L. L. Angew. Chem., Int. Ed. 2005, 44, 4029.  doi: 10.1002/anie.200462630

    27. [27]

      Fasan, R.; Chen, M. M.; Crook, N. C.; Arnold, F. H. Angew. Chem., Int. Ed. 2007, 46, 8414.  doi: 10.1002/anie.200702616

    28. [28]

      Chen, J.; Kong, F.; Ma, N.; Zhao, P.; Liu, C.; Wang, X.; Cong, Z. ACS Catal. 2019, 9, 7350.  doi: 10.1021/acscatal.9b02507

    29. [29]

      (a) Scheps, D.; Malca, S. H.; Hoffmann, H.; Nestl, B. M.; Hauer, B. Org. Biomol. Chem. 2011, 9, 6727. (b) Funhoff, E. G.; Bauer, U.; García-Rubio, I.; Witholt, B.; Van Beilen, J. B. J. Bacteriol. 2006, 5220. (c) Bordeaux, M.; Girval, D.; Rullaud, R.; Subileau, M.; Dubreucq, E.; Drone, J. Appl. Microbiol. Biot. 2014, 98, 6275.

    30. [30]

      (a) Hsieh, S.-C.; Wang, J.-H.; Lai, Y.-C.; Su, C.-Y.; Lee, K.-T. Appl. Environ. Microbiol. 2018, 84, e01806-17. (b) Kochius, S.; Marwijk, J.; Ebrecht, A. C.; Opperman, D. J.; Smit, M. S. Catalysts 2018, 8, 531.

    31. [31]

      Nie, Y.; Liang, J.-L.; Fang, H.; Tang, Y.-Q.; Wu, X.-L. Appl. Microbiol. Biotechnol. 2014, 98, 163.  doi: 10.1007/s00253-013-4821-1

    32. [32]

      Zimmer, T.; Ohkuma, M.; Ohta, A.; Takagi, M.; Schunck, W. H. Biochem. Biophys. Res. Commun. 1996, 224, 784.  doi: 10.1006/bbrc.1996.1100

    33. [33]

      Hanano, A.; Shaban, M.; Almousally, I.; Al-Ktaifani, M. Chemosphere 2015, 135, 418.  doi: 10.1016/j.chemosphere.2014.11.011

    34. [34]

      Craft, D. L.; Madduri, K. M.; Eshoo, M.; Wilson, C. R. Appl. Environ. Microbiol. 2003, 5983.
       

    35. [35]

      Van Bogaert, I. N. A.; Demey1, M.; Develter, D.; Soetaert, W.; Vandamme, E. J. FEMS Yeast Res. 2009, 9, 87.  doi: 10.1111/j.1567-1364.2008.00454.x

    36. [36]

      (a) Lida, T.; Sumita, T.; Ohta, A.; Takagi, M. Yeast 2000, 16, 1077. (b) Panwar, S. L.; Krishnamurthy, S.; Gupta, V.; Alarco, A. M.; Raymond, M.; Sanglard, D.; Prasad, R. Yeast 2001, 18, 1117. (c) Carratore, R. D.; Gervasi, P. G.; Contini, M. P.; Beffy, P.; Maserti, B. E.; Giovannetti, G.; Brondolo, A.; Longo, V. Biotechnol. Lett. 2011, 33, 1201.

    37. [37]

      Trippe, K. M.; Wolpert, T. J.; Hyman, M. R.; Ciuffetti, L. M. Biodegradation 2014, 25, 137.  doi: 10.1007/s10532-013-9646-1

    38. [38]

      Park, H.; Park, G.; Jeon, W.; Ahn, J.-O.; Yang, Y.-H.; Choi, K.-Y. Biotechnol. Adv. 2020, DOI: 10.1016/j.biotechadv.2020.107504.  doi: 10.1016/j.biotechadv.2020.107504

    39. [39]

      (a) Von Bühler, C. J.; Urlacher, V. B. Chem. Commun. 2014, 50, 4089. (b) Tieves, F.; Erenburg, I. N.; Mahmoud, O.; Urlacher, V. B. Biotechnol. Bioeng. 2016, 113, 1845.

    40. [40]

      Syed, K.; Porollo, A.; Lam, Y. W. Appl. Environ. Microbiol. 2013, 79, 2692.  doi: 10.1128/AEM.03767-12

    41. [41]

      (a) Greer, S.; Wen, M.; Bird, D.; Wu, X.; Samuels, L.; Kunst, L.; Jetter, R. Plant Physiol. 2007, 145, 653. (b) Zhang, D.; Yang, H.; Wang, X.; Qiu, Y.; Tian, L.; Qi, X.; Qu, L. Q. New Phytol. 2020, 225, 2094.

    42. [42]

      Minerdi, D.; Sadeghi, S. J.; Nardo, G. D.; Rua, F.; Castrignanò, S.; Allegra, P.; Gilardi, G. Mol. Microbiol. 2015, 95, 539.  doi: 10.1111/mmi.12883

    43. [43]

      Fisher, M. B.; Zheng, Y. M.; Rettie, A. E. Biochem. Biophys. Res. Commun. 1998, 248, 352.  doi: 10.1006/bbrc.1998.8842

    44. [44]

      (a) Maseme, M. J.; Pennec, A.; Marwijk, J.; Opperman, D. J.; Smit, M. S. Angew. Chem., Int. Ed. 2020, DOI: 10.1002/anie.202001055. (b) Manning, J.; Tavanti, M.; Porter, J.; Kress, N.; DeVisser, S.; Turner, N.; Flitsch, S. Angew. Chem., Int. Ed. 2019, 58, 5668. (c) Sakai, K.; Matsuzaki, F.; Wise, L.; Sakai, Y.; Jindou, S.; Ichinose, H.; Takaya, N.; Kato, M.; Wariishi, H.; Shimizu, M. Appl. Environ. Microbiol. 2018, 84, e01091-18.

    45. [45]

      (a) Johnston, J. B.; Kells, P. M.; Podust, L. M.; Ortiz de Montellano, P. R. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20687. (b) Salamanca, D.; Karande, R.; Schmid, A.; Dobslaw, D. Appl. Microbiol. Biotechnol. 2015, 99, 6889.

    46. [46]

      (a) Yin, Y.-C.; Yu, H.-L.; Luan, Z.-J.; Li, R.-J.; Ouyang, P.-F.; Liu, J.; Xu, J.-H. ChemBioChem 2014, 15, 2443. (b) Xie, L.; Chen, K.; Cui, H.; Wan, N.; Cui, B.; Han, W.; Chen, Y. ChemBioChem 2020, 20, DOI: 10.1002/cbic.201900691.

    47. [47]

      Bell, S. G.; Yang, W.; Dale, A.; Zhou, W.; Wong, L. L. Appl. Microbiol. Biotechnol. 2013, 97, 3979.  doi: 10.1007/s00253-012-4278-7

    48. [48]

      Shoji, O.; Aiba, Y.; Watanabe, Y. Acc. Chem. Res. 2019, 52, 925.  doi: 10.1021/acs.accounts.8b00651

    49. [49]

      Dus, K.; Katagiri, M.; Yu, C. A.; Erbes, D. L.; Gunsalus, I. C. Biochem. Biophys. Res. Commun. 1970, 40, 1423.  doi: 10.1016/0006-291X(70)90026-4

    50. [50]

      Stevenson, J. A.; Westlake, A. C. G.; Whittock, C.; Wong, L. L. J. Am. Chem. Soc. 1996, 118, 12846.  doi: 10.1021/ja963087q

    51. [51]

      Stevenson, J. A.; Bearpark, J. K.; Wong, L. L. New J. Chem. 1998, 22, 551.  doi: 10.1039/a801637b

    52. [52]

      Bell, S. G.; Stevenson, J. A.; Boyd, H. D.; Campbell, S.; Riddle, A. D.; Orton, E. L.; Wong, L. L. Chem. Commun. 2002, 490.

    53. [53]

      Bell, S. G.; Orton, E. L.; Boyd, H. D.; Stevenson, J. A.; Riddle, A. D.; Campbell, S.; Wong, L. L. Dalton Trans. 2003, 2133.

    54. [54]

      Poulos, T. L.; Finzel, B. C.; Howard, A. J. Biochemistry 1986, 25, 5314.  doi: 10.1021/bi00366a049

    55. [55]

      Miura, Y.; Fulco, A. J. Biochim. Biophys. Acta 1975, 388, 305.  doi: 10.1016/0005-2760(75)90089-2

    56. [56]

      Adam, W.; Lukacs, Z.; Saha-Möller, C. R.; Weckerle, B.; Schreier, P. Eur. J. Org. Chem. 2000, 16, 2923.

    57. [57]

      Appel, D.; Lutz, S.; Fischer, P.; Schwaneberg, U.; Schmid, R. D. J. Biotechnol. 2001, 88, 167.  doi: 10.1016/S0168-1656(01)00249-8

    58. [58]

      Glieder, A.; Farinas, E. T.; Arnold, F. H. Nat. Biotechnol. 2002, 20, 1135.  doi: 10.1038/nbt744

    59. [59]

      Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem. Soc. 2003, 125, 13442.  doi: 10.1021/ja0303790

    60. [60]

      Meinhold, P.; Peters, M. W.; Chen, M. M.; Takahashi, K.; Arnold, F. H. ChemBioChem 2005, 6, 1765.  doi: 10.1002/cbic.200500261

    61. [61]

      Farinas, E. T.; Schwaneberg, U.; Gliede, A.; Arnold, F. H. Adv. Synth. Catal. 2001, 343, 601.  doi: 10.1002/1615-4169(200108)343:6/7<601::AID-ADSC601>3.0.CO;2-9

    62. [62]

      Weber, E.; Seifert, A.; Antonovici, M.; Geinitz, C.; Pleiss, J.; Urlacher, V. B. Chem. Commun. 2011, 47, 944.  doi: 10.1039/C0CC02924F

    63. [63]

      Staudt, S.; Burda, E.; Giese, C.; Müller, C. A.; Marienhagen, J.; Schwaneberg, U.; Hummel, W.; Drauz, K.; Gröger, H. Angew. Chem., Int. Ed. 2013, 52, 2359.  doi: 10.1002/anie.201204464

    64. [64]

      Müller, C. A.; Akkapurathu, B.; Winkler, T.; Svenja Staudt, S.; Hummel, W.; Gröger, H.; Schwaneberg, U. Adv. Synth. Catal. 2013, 355, 1787.  doi: 10.1002/adsc.201300143

    65. [65]

      Pennec, A.; Hoomann, F.; Smit, M. S.; Opperman, D. J. ChemCatChem 2015, 7, 236.  doi: 10.1002/cctc.201402835

    66. [66]

      Roiban, G. D.; Reetz, M. T. Chem. Commun. 2015, 51, 2208.  doi: 10.1039/C4CC09218J

    67. [67]

      Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.  doi: 10.1002/anie.201310892

    68. [68]

      Zhang, W.; Tang, W.; Wang, Z.; Li, Z. Adv. Synth. Catal. 2010, 352, 3380.  doi: 10.1002/adsc.201000266

    69. [69]

      Chang, D. L.; Feiten, H. J.; Witholt, B.; Li, Z. Tetrahedron: Asymmetry 2002, 13, 2141.  doi: 10.1016/S0957-4166(02)00534-7

    70. [70]

      Chang, D. L.; Feiten, H. J.; Engesser, K. H.; Van Beilen, J. B.; Witholt, B.; Li, Z. Org. Lett. 2002, 4, 1859.  doi: 10.1021/ol025829s

    71. [71]

      Reetz, M. T. Angew. Chem., Int. Ed. 2011, 50, 138.  doi: 10.1002/anie.201000826

    72. [72]

      Yang, Y.; Liu, J.; Li, Z. Angew. Chem., Int. Ed. 2014, 53, 3120.  doi: 10.1002/anie.201311091

    73. [73]

      Landwehr, M.; Hochrein, L.; Otey, C. R.; Kasrayan, A.; Backvall, J. E.; Arnold, F. H. J. Am. Chem. Soc. 2006, 128, 6058.  doi: 10.1021/ja061261x

    74. [74]

      Li, S.; Chaulagain, M. R.; Knauff, A. R.; Podust, L. M.; Montgomery, J.; Sherman, D. H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18463.  doi: 10.1073/pnas.0907203106

    75. [75]

      Narayan, A. R. H.; Jiménez-Osés, G.; Liu, P.; Negretti, S.; Zhao, W.; Gilbert, M. M.; Ramabhadran, R. O., Yand, Y.-F.; Furan, L. R.; Li, Z.; Podust, L. M.; Montgomery, J.; Houk, K. N.; Sherman, D. H. Nat. Chem. 2015, 7, 653.  doi: 10.1038/nchem.2285

    76. [76]

      Ma, N.; Chen, Z.; Chen, J.; Wang, C.; Zhou, H.; Yao, L.; Shoji, O.; Watanabe, Y.; Cong, Z. Angew. Chem., Int. Ed. 2018, 57, 7628.  doi: 10.1002/anie.201801592

    77. [77]

      Xu, J.; Wang, C.; Cong, Z. Chem. Eur. J. 2019, 25, 6853.  doi: 10.1002/chem.201806383

    78. [78]

      Shoji, O.; Yanagisawa, S.; Stanfield, J. K.; Suzuki, K.; Cong, Z.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. Angew. Chem., Int. Ed. 2017, 56, 10324.  doi: 10.1002/anie.201703461

    79. [79]

      Cong, Z.; Shoji, O.; Kasai, C.; Kawakami, N.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. ACS Catal. 2015, 5, 150.  doi: 10.1021/cs501592f

    80. [80]

      Zhang, W.; Ma, M.; Hollmann, F. J. Am. Chem. Soc. 2019, 141, 3116.  doi: 10.1021/jacs.8b12282

    81. [81]

      Demming, R. M.; Hammer, S. C.; Nestl, B. M.; Gergel, S.; Fademrecht, S.; Pleiss, J.; Hauer, B. Angew. Chem., Int. Ed. 2019, 58, 173.  doi: 10.1002/anie.201810005

    82. [82]

      (a) Wang, Y.; Lan, D.; Durrani, R.; Hollmann, F. Curr. Opin. Chem. Biol. 2017, 37, 1. (b) Piontek, K.; Strittmatter, E.; Ullrich, R.; Gröbe, G.; Pecyna, M. J.; Kluge, M.; Scheibner, K.; Hofrichter, M.; Plattner, D. A. J. Biol. Chem. 2013, 288, 34767.

    83. [83]

      Wang, X.; Chen, J.; Chen, Z.; Zhou, H.; Cong, Z. Biotic Resources 2017, 39, 75 (in Chinese).
       

    84. [84]

      Chen, Z.; Chen, J.; Ma, N.; Zhou, H.; Cong, Z. J. Porphyr. Phthalocya. 2018, 22, 831.  doi: 10.1142/S108842461850061X

    85. [85]

      Jiang, Y.; Wang, C.; Ma, N.; Chen, J.; Liu, C.; Wang, F.; Xu, J.; Cong, Z. Catal. Sci. Technol. 2020, 10, 1219.  doi: 10.1039/D0CY00241K

    86. [86]

      Kawakami, N.; Shoji, O.; Watanabe, Y. Angew. Chem., Int. Ed. 2011, 50, 5315.  doi: 10.1002/anie.201007975

    87. [87]

      (a) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Manfred, T.; Reetz, M. T. Angew. Chem., Int. Ed. 2011, 50, 2720. (b) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Manfred, T.; Reetz, M. T. Angew. Chem., Int. Ed. 2013, 52, 13503.

    88. [88]

      Kawakami, N.; Shoji, O.; Watanabe, Y. Chem. Sci. 2013, 4, 2344.  doi: 10.1039/c3sc50378j

    89. [89]

      Ariyasu, S.; Kodama, Y.; Kasai, C.; Cong, Z.; Stanfield, J. K.; Aiba, Y.; Watanabe, Y.; Shoji, O. ChemCatChem 2019, 11, 4709.  doi: 10.1002/cctc.201901323

    90. [90]

      Kawakami, N.; Cong, Z.; Shoji, O.; Watanabe, Y. J. Porphyr. Phthalocya. 2015, 19, 329.  doi: 10.1142/S1088424615500145

    91. [91]

      Munday, S. D.; Shoji, O.; Watanabe, Y.; Wong, L. L.; Bell, S. G. Chem. Commun. 2016, 52, 1036.  doi: 10.1039/C5CC09247G

    92. [92]

      Peter, S.; Kinne, M.; Wang, X.; Ullrich, R.; Kayser, G.; Groves, J. T. FEBS J. 2011, 278, 3667.  doi: 10.1111/j.1742-4658.2011.08285.x

    93. [93]

      Cooley, R. B.; Dubbels, B. L.; Sayavedra-Soto, L. A.; Bottomley, P. J.; Arp, D. Microbiology 2009, 155, 2086.  doi: 10.1099/mic.0.028175-0

    94. [94]

      Chen, M.; Coelho, P. S.; Arnold, F. H. Adv. Synth. Catal. 2012, 354, 964.  doi: 10.1002/adsc.201100833

    95. [95]

      Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.  doi: 10.1038/417507a

    96. [96]

      Lee, J. H.; Nam, D. H.; Lee, S. H.; Park, J. H.; Park, S. J.; Lee, S. H.; Park, C. B.; Jeong, K. J. Bioconjugate Chem. 2014, 25, 2101.  doi: 10.1021/bc500404j

    97. [97]

      Ge, J.; Lei, J.; Zare, R. N. Nat. Nanotechnol. 2012, 7, 428.  doi: 10.1038/nnano.2012.80

    98. [98]

      Khatri, Y.; Hannemann, F.; Ewen, K. M.; Pistorius, D.; Perlova, O.; Kagawa, N.; Brachmann, A. O.; Müller, R.; Bernhardt, R. Chem. Biol. 2010, 17, 1295.  doi: 10.1016/j.chembiol.2010.10.010

    99. [99]

      Lee, J. H.; Nam, D. H.; Lee, S. H.; Park, J. H.; Park, C. B.; Jeong, K. J. J. Ind. Eng. Chem. 2016, 33, 28.  doi: 10.1016/j.jiec.2015.10.002

    100. [100]

      Karande, R.; Schmid, A.; Buehler, K. Org. Process Res. Dev. 2016, 20, 361.  doi: 10.1021/acs.oprd.5b00352

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(180)
  • Abstract views(4890)
  • HTML views(1620)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return