Selective Hydroxylation of Alkanes Catalyzed by Cytochrome P450 Enzymes
- Corresponding author: Cong Zhiqi, congzq@qibebt.ac.cn
Citation: Wang Xiling, Chen Jie, Ma Nana, Cong Zhiqi. Selective Hydroxylation of Alkanes Catalyzed by Cytochrome P450 Enzymes[J]. Acta Chimica Sinica, ;2020, 78(6): 490-503. doi: 10.6023/A20030086
Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, Routledge, New York, 2003.
Hashiguchi, B. G.; Konnick, M. M.; Bischof, S. M.; Gustafson, S. J.; Devarajan, D.; Gunsalus, N.; Daniel H.; Ess, D. H.; Periana, R. A. Science 2014, 343, 1232.
doi: 10.1126/science.1249357
Soussan, L.; Pen, N.; Belleville, M. P.; Marcano, J. S.; Jeanjean, D. P. J. Biotechnol. 2016, 222, 117.
doi: 10.1016/j.jbiotec.2016.02.007
Sirajuddin, S.; Rosenzweig, A. C. Biochemistry 2015, 54, 2283.
doi: 10.1021/acs.biochem.5b00198
Cahalan, E.; Ernfors, M.; Müller, C.; Devaney, D.; Laughlin, R. J.; Watson, C. J.; Hennessy, D.; Grant, J.; Khalil, M. I.; McGeough, K. L.; Richards, K. G. Agric. Ecosyst. Environ. 2015, 199, 339.
doi: 10.1016/j.agee.2014.09.008
Van Beilen, J. B.; Wubbolts, M. G.; Witholt, B. Biodegradation 1994, 5, 161.
doi: 10.1007/BF00696457
Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism, and Biochemistry, Routledge, New York, 2005.
Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M. D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D. R.; Teoh, K. H.; Reed, D. W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K. W.; Fickes, S.; Galazzo, J.; Gaucher, S. P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L. F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P. S.; Keasling, J. D.; Reiling, K. K.; Renninger, N. S.; Newman, J. D. Nature 2013, 496, 528.
doi: 10.1038/nature12051
(a) Qi, F.; Lei, C.; Li, F.; Zhang, X.; Wang, J.; Zhang, W.; Fan, Z.; Li, W.; Tang, G.; Xiao, Y.; Zhao, G.; Li, S. Nat. Commun. 2018, 9, 2342. (b) Sun, W.; Xue, H.; Liu, H.; Lv, B.; Yu, Y.; Wang, Y.; Huang, M.; Li, C. ACS Catal. 2020, 10, 4253. (c) Tian, X.; Ruana, J.-X.; Huang, J.-Q.; Yang, C.-Q.; Fang, X.; Chen, Z.-W.; Hong, H.; Wang, L.-J.; Mao, Y.-B.; Lu, S.; Zhang, T.-Z.; Chen, X.-Y. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E5410. (d) Wang, W.-F.; Xiao, H.; Zhong, J.-J. Biotechnol. Bioeng. 2018, 115, 1842.
Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013, 339, 307.
doi: 10.1126/science.1231434
McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 9309.
doi: 10.1002/anie.201304401
Kan, S.; Huang, X.; Gumulya, Y. Nature 2017, 552, 132.
doi: 10.1038/nature24996
Haynes, C. A.; Gonzalez, R. Nat. Chem. Biol. 2014, 10, 331.
doi: 10.1038/nchembio.1509
Munz, D.; Strassner, T. Inorg. Chem. 2015, 54, 5043.
doi: 10.1021/ic502515x
Bordeaux, M.; Galarneau, A.; Drone, J. Angew. Chem., Int. Ed. 2012, 51, 10712.
doi: 10.1002/anie.201203280
Lawton, T. J.; Rosenzweig, A. C. J. Am. Chem. Soc. 2016, 138, 9327.
doi: 10.1021/jacs.6b04568
Nelson, D. R. Biochim. Biophys. Acta. Proteins Proteom. 2018, 1866, 141.
doi: 10.1016/j.bbapap.2017.05.003
(a) Poulos, T. L.; Finzel, B. C.; Howard, A. J. J. Mol. Biol. 1987, 195, 687. (b) Tripathi, S.; Li, H.; Poulos, T. L. Science 2013, 340, 1227.
Ravichandran, K. G.; Boddupalli, S. S.; Hasemann, C. A.; Peterson, J. A.; Deisenhofer, J. Science 1993, 261, 731.
doi: 10.1126/science.8342039
Haines, D. C.; Tomchick, D. R.; Machius, M.; Peterson, J. A. Biochemistry 2001, 40, 13456.
doi: 10.1021/bi011197q
(a) Rittle, J.; Green, M. T. Science 2010, 330, 933. (b) Li, X.-X.; Postils, V.; Sun, W.; Faponle, A. S.; Solà, M.; Wang, Y.; Nam, W.; de Visser, S. P. Chem. Eur. J. 2017, 23, 6406.
Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, B. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.
doi: 10.1126/science.287.5458.1615
Whitehouse, C. J.; Bell, S. G.; Wong, L. L. Chem. Soc. Rev. 2012, 41, 1218.
doi: 10.1039/C1CS15192D
Xu, F.; Bell, S. G.; Lednik, J.; Insley, A.; Rao, Z.; Wong, L. L. Angew. Chem., Int. Ed. 2005, 44, 4029.
doi: 10.1002/anie.200462630
Fasan, R.; Chen, M. M.; Crook, N. C.; Arnold, F. H. Angew. Chem., Int. Ed. 2007, 46, 8414.
doi: 10.1002/anie.200702616
Chen, J.; Kong, F.; Ma, N.; Zhao, P.; Liu, C.; Wang, X.; Cong, Z. ACS Catal. 2019, 9, 7350.
doi: 10.1021/acscatal.9b02507
(a) Scheps, D.; Malca, S. H.; Hoffmann, H.; Nestl, B. M.; Hauer, B. Org. Biomol. Chem. 2011, 9, 6727. (b) Funhoff, E. G.; Bauer, U.; García-Rubio, I.; Witholt, B.; Van Beilen, J. B. J. Bacteriol. 2006, 5220. (c) Bordeaux, M.; Girval, D.; Rullaud, R.; Subileau, M.; Dubreucq, E.; Drone, J. Appl. Microbiol. Biot. 2014, 98, 6275.
(a) Hsieh, S.-C.; Wang, J.-H.; Lai, Y.-C.; Su, C.-Y.; Lee, K.-T. Appl. Environ. Microbiol. 2018, 84, e01806-17. (b) Kochius, S.; Marwijk, J.; Ebrecht, A. C.; Opperman, D. J.; Smit, M. S. Catalysts 2018, 8, 531.
Nie, Y.; Liang, J.-L.; Fang, H.; Tang, Y.-Q.; Wu, X.-L. Appl. Microbiol. Biotechnol. 2014, 98, 163.
doi: 10.1007/s00253-013-4821-1
Zimmer, T.; Ohkuma, M.; Ohta, A.; Takagi, M.; Schunck, W. H. Biochem. Biophys. Res. Commun. 1996, 224, 784.
doi: 10.1006/bbrc.1996.1100
Hanano, A.; Shaban, M.; Almousally, I.; Al-Ktaifani, M. Chemosphere 2015, 135, 418.
doi: 10.1016/j.chemosphere.2014.11.011
Craft, D. L.; Madduri, K. M.; Eshoo, M.; Wilson, C. R. Appl. Environ. Microbiol. 2003, 5983.
Van Bogaert, I. N. A.; Demey1, M.; Develter, D.; Soetaert, W.; Vandamme, E. J. FEMS Yeast Res. 2009, 9, 87.
doi: 10.1111/j.1567-1364.2008.00454.x
(a) Lida, T.; Sumita, T.; Ohta, A.; Takagi, M. Yeast 2000, 16, 1077. (b) Panwar, S. L.; Krishnamurthy, S.; Gupta, V.; Alarco, A. M.; Raymond, M.; Sanglard, D.; Prasad, R. Yeast 2001, 18, 1117. (c) Carratore, R. D.; Gervasi, P. G.; Contini, M. P.; Beffy, P.; Maserti, B. E.; Giovannetti, G.; Brondolo, A.; Longo, V. Biotechnol. Lett. 2011, 33, 1201.
Trippe, K. M.; Wolpert, T. J.; Hyman, M. R.; Ciuffetti, L. M. Biodegradation 2014, 25, 137.
doi: 10.1007/s10532-013-9646-1
Park, H.; Park, G.; Jeon, W.; Ahn, J.-O.; Yang, Y.-H.; Choi, K.-Y. Biotechnol. Adv. 2020, DOI: 10.1016/j.biotechadv.2020.107504.
doi: 10.1016/j.biotechadv.2020.107504
(a) Von Bühler, C. J.; Urlacher, V. B. Chem. Commun. 2014, 50, 4089. (b) Tieves, F.; Erenburg, I. N.; Mahmoud, O.; Urlacher, V. B. Biotechnol. Bioeng. 2016, 113, 1845.
Syed, K.; Porollo, A.; Lam, Y. W. Appl. Environ. Microbiol. 2013, 79, 2692.
doi: 10.1128/AEM.03767-12
(a) Greer, S.; Wen, M.; Bird, D.; Wu, X.; Samuels, L.; Kunst, L.; Jetter, R. Plant Physiol. 2007, 145, 653. (b) Zhang, D.; Yang, H.; Wang, X.; Qiu, Y.; Tian, L.; Qi, X.; Qu, L. Q. New Phytol. 2020, 225, 2094.
Minerdi, D.; Sadeghi, S. J.; Nardo, G. D.; Rua, F.; Castrignanò, S.; Allegra, P.; Gilardi, G. Mol. Microbiol. 2015, 95, 539.
doi: 10.1111/mmi.12883
Fisher, M. B.; Zheng, Y. M.; Rettie, A. E. Biochem. Biophys. Res. Commun. 1998, 248, 352.
doi: 10.1006/bbrc.1998.8842
(a) Maseme, M. J.; Pennec, A.; Marwijk, J.; Opperman, D. J.; Smit, M. S. Angew. Chem., Int. Ed. 2020, DOI: 10.1002/anie.202001055. (b) Manning, J.; Tavanti, M.; Porter, J.; Kress, N.; DeVisser, S.; Turner, N.; Flitsch, S. Angew. Chem., Int. Ed. 2019, 58, 5668. (c) Sakai, K.; Matsuzaki, F.; Wise, L.; Sakai, Y.; Jindou, S.; Ichinose, H.; Takaya, N.; Kato, M.; Wariishi, H.; Shimizu, M. Appl. Environ. Microbiol. 2018, 84, e01091-18.
(a) Johnston, J. B.; Kells, P. M.; Podust, L. M.; Ortiz de Montellano, P. R. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20687. (b) Salamanca, D.; Karande, R.; Schmid, A.; Dobslaw, D. Appl. Microbiol. Biotechnol. 2015, 99, 6889.
(a) Yin, Y.-C.; Yu, H.-L.; Luan, Z.-J.; Li, R.-J.; Ouyang, P.-F.; Liu, J.; Xu, J.-H. ChemBioChem 2014, 15, 2443. (b) Xie, L.; Chen, K.; Cui, H.; Wan, N.; Cui, B.; Han, W.; Chen, Y. ChemBioChem 2020, 20, DOI: 10.1002/cbic.201900691.
Bell, S. G.; Yang, W.; Dale, A.; Zhou, W.; Wong, L. L. Appl. Microbiol. Biotechnol. 2013, 97, 3979.
doi: 10.1007/s00253-012-4278-7
Shoji, O.; Aiba, Y.; Watanabe, Y. Acc. Chem. Res. 2019, 52, 925.
doi: 10.1021/acs.accounts.8b00651
Dus, K.; Katagiri, M.; Yu, C. A.; Erbes, D. L.; Gunsalus, I. C. Biochem. Biophys. Res. Commun. 1970, 40, 1423.
doi: 10.1016/0006-291X(70)90026-4
Stevenson, J. A.; Westlake, A. C. G.; Whittock, C.; Wong, L. L. J. Am. Chem. Soc. 1996, 118, 12846.
doi: 10.1021/ja963087q
Stevenson, J. A.; Bearpark, J. K.; Wong, L. L. New J. Chem. 1998, 22, 551.
doi: 10.1039/a801637b
Bell, S. G.; Stevenson, J. A.; Boyd, H. D.; Campbell, S.; Riddle, A. D.; Orton, E. L.; Wong, L. L. Chem. Commun. 2002, 490.
Bell, S. G.; Orton, E. L.; Boyd, H. D.; Stevenson, J. A.; Riddle, A. D.; Campbell, S.; Wong, L. L. Dalton Trans. 2003, 2133.
Poulos, T. L.; Finzel, B. C.; Howard, A. J. Biochemistry 1986, 25, 5314.
doi: 10.1021/bi00366a049
Miura, Y.; Fulco, A. J. Biochim. Biophys. Acta 1975, 388, 305.
doi: 10.1016/0005-2760(75)90089-2
Adam, W.; Lukacs, Z.; Saha-Möller, C. R.; Weckerle, B.; Schreier, P. Eur. J. Org. Chem. 2000, 16, 2923.
Appel, D.; Lutz, S.; Fischer, P.; Schwaneberg, U.; Schmid, R. D. J. Biotechnol. 2001, 88, 167.
doi: 10.1016/S0168-1656(01)00249-8
Glieder, A.; Farinas, E. T.; Arnold, F. H. Nat. Biotechnol. 2002, 20, 1135.
doi: 10.1038/nbt744
Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem. Soc. 2003, 125, 13442.
doi: 10.1021/ja0303790
Meinhold, P.; Peters, M. W.; Chen, M. M.; Takahashi, K.; Arnold, F. H. ChemBioChem 2005, 6, 1765.
doi: 10.1002/cbic.200500261
Farinas, E. T.; Schwaneberg, U.; Gliede, A.; Arnold, F. H. Adv. Synth. Catal. 2001, 343, 601.
doi: 10.1002/1615-4169(200108)343:6/7<601::AID-ADSC601>3.0.CO;2-9
Weber, E.; Seifert, A.; Antonovici, M.; Geinitz, C.; Pleiss, J.; Urlacher, V. B. Chem. Commun. 2011, 47, 944.
doi: 10.1039/C0CC02924F
Staudt, S.; Burda, E.; Giese, C.; Müller, C. A.; Marienhagen, J.; Schwaneberg, U.; Hummel, W.; Drauz, K.; Gröger, H. Angew. Chem., Int. Ed. 2013, 52, 2359.
doi: 10.1002/anie.201204464
Müller, C. A.; Akkapurathu, B.; Winkler, T.; Svenja Staudt, S.; Hummel, W.; Gröger, H.; Schwaneberg, U. Adv. Synth. Catal. 2013, 355, 1787.
doi: 10.1002/adsc.201300143
Pennec, A.; Hoomann, F.; Smit, M. S.; Opperman, D. J. ChemCatChem 2015, 7, 236.
doi: 10.1002/cctc.201402835
Roiban, G. D.; Reetz, M. T. Chem. Commun. 2015, 51, 2208.
doi: 10.1039/C4CC09218J
Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.
doi: 10.1002/anie.201310892
Zhang, W.; Tang, W.; Wang, Z.; Li, Z. Adv. Synth. Catal. 2010, 352, 3380.
doi: 10.1002/adsc.201000266
Chang, D. L.; Feiten, H. J.; Witholt, B.; Li, Z. Tetrahedron: Asymmetry 2002, 13, 2141.
doi: 10.1016/S0957-4166(02)00534-7
Chang, D. L.; Feiten, H. J.; Engesser, K. H.; Van Beilen, J. B.; Witholt, B.; Li, Z. Org. Lett. 2002, 4, 1859.
doi: 10.1021/ol025829s
Reetz, M. T. Angew. Chem., Int. Ed. 2011, 50, 138.
doi: 10.1002/anie.201000826
Yang, Y.; Liu, J.; Li, Z. Angew. Chem., Int. Ed. 2014, 53, 3120.
doi: 10.1002/anie.201311091
Landwehr, M.; Hochrein, L.; Otey, C. R.; Kasrayan, A.; Backvall, J. E.; Arnold, F. H. J. Am. Chem. Soc. 2006, 128, 6058.
doi: 10.1021/ja061261x
Li, S.; Chaulagain, M. R.; Knauff, A. R.; Podust, L. M.; Montgomery, J.; Sherman, D. H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18463.
doi: 10.1073/pnas.0907203106
Narayan, A. R. H.; Jiménez-Osés, G.; Liu, P.; Negretti, S.; Zhao, W.; Gilbert, M. M.; Ramabhadran, R. O., Yand, Y.-F.; Furan, L. R.; Li, Z.; Podust, L. M.; Montgomery, J.; Houk, K. N.; Sherman, D. H. Nat. Chem. 2015, 7, 653.
doi: 10.1038/nchem.2285
Ma, N.; Chen, Z.; Chen, J.; Wang, C.; Zhou, H.; Yao, L.; Shoji, O.; Watanabe, Y.; Cong, Z. Angew. Chem., Int. Ed. 2018, 57, 7628.
doi: 10.1002/anie.201801592
Xu, J.; Wang, C.; Cong, Z. Chem. Eur. J. 2019, 25, 6853.
doi: 10.1002/chem.201806383
Shoji, O.; Yanagisawa, S.; Stanfield, J. K.; Suzuki, K.; Cong, Z.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. Angew. Chem., Int. Ed. 2017, 56, 10324.
doi: 10.1002/anie.201703461
Cong, Z.; Shoji, O.; Kasai, C.; Kawakami, N.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. ACS Catal. 2015, 5, 150.
doi: 10.1021/cs501592f
Zhang, W.; Ma, M.; Hollmann, F. J. Am. Chem. Soc. 2019, 141, 3116.
doi: 10.1021/jacs.8b12282
Demming, R. M.; Hammer, S. C.; Nestl, B. M.; Gergel, S.; Fademrecht, S.; Pleiss, J.; Hauer, B. Angew. Chem., Int. Ed. 2019, 58, 173.
doi: 10.1002/anie.201810005
(a) Wang, Y.; Lan, D.; Durrani, R.; Hollmann, F. Curr. Opin. Chem. Biol. 2017, 37, 1. (b) Piontek, K.; Strittmatter, E.; Ullrich, R.; Gröbe, G.; Pecyna, M. J.; Kluge, M.; Scheibner, K.; Hofrichter, M.; Plattner, D. A. J. Biol. Chem. 2013, 288, 34767.
Wang, X.; Chen, J.; Chen, Z.; Zhou, H.; Cong, Z. Biotic Resources 2017, 39, 75 (in Chinese).
Chen, Z.; Chen, J.; Ma, N.; Zhou, H.; Cong, Z. J. Porphyr. Phthalocya. 2018, 22, 831.
doi: 10.1142/S108842461850061X
Jiang, Y.; Wang, C.; Ma, N.; Chen, J.; Liu, C.; Wang, F.; Xu, J.; Cong, Z. Catal. Sci. Technol. 2020, 10, 1219.
doi: 10.1039/D0CY00241K
Kawakami, N.; Shoji, O.; Watanabe, Y. Angew. Chem., Int. Ed. 2011, 50, 5315.
doi: 10.1002/anie.201007975
(a) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Manfred, T.; Reetz, M. T. Angew. Chem., Int. Ed. 2011, 50, 2720. (b) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Manfred, T.; Reetz, M. T. Angew. Chem., Int. Ed. 2013, 52, 13503.
Kawakami, N.; Shoji, O.; Watanabe, Y. Chem. Sci. 2013, 4, 2344.
doi: 10.1039/c3sc50378j
Ariyasu, S.; Kodama, Y.; Kasai, C.; Cong, Z.; Stanfield, J. K.; Aiba, Y.; Watanabe, Y.; Shoji, O. ChemCatChem 2019, 11, 4709.
doi: 10.1002/cctc.201901323
Kawakami, N.; Cong, Z.; Shoji, O.; Watanabe, Y. J. Porphyr. Phthalocya. 2015, 19, 329.
doi: 10.1142/S1088424615500145
Munday, S. D.; Shoji, O.; Watanabe, Y.; Wong, L. L.; Bell, S. G. Chem. Commun. 2016, 52, 1036.
doi: 10.1039/C5CC09247G
Peter, S.; Kinne, M.; Wang, X.; Ullrich, R.; Kayser, G.; Groves, J. T. FEBS J. 2011, 278, 3667.
doi: 10.1111/j.1742-4658.2011.08285.x
Cooley, R. B.; Dubbels, B. L.; Sayavedra-Soto, L. A.; Bottomley, P. J.; Arp, D. Microbiology 2009, 155, 2086.
doi: 10.1099/mic.0.028175-0
Chen, M.; Coelho, P. S.; Arnold, F. H. Adv. Synth. Catal. 2012, 354, 964.
doi: 10.1002/adsc.201100833
Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
doi: 10.1038/417507a
Lee, J. H.; Nam, D. H.; Lee, S. H.; Park, J. H.; Park, S. J.; Lee, S. H.; Park, C. B.; Jeong, K. J. Bioconjugate Chem. 2014, 25, 2101.
doi: 10.1021/bc500404j
Ge, J.; Lei, J.; Zare, R. N. Nat. Nanotechnol. 2012, 7, 428.
doi: 10.1038/nnano.2012.80
Khatri, Y.; Hannemann, F.; Ewen, K. M.; Pistorius, D.; Perlova, O.; Kagawa, N.; Brachmann, A. O.; Müller, R.; Bernhardt, R. Chem. Biol. 2010, 17, 1295.
doi: 10.1016/j.chembiol.2010.10.010
Lee, J. H.; Nam, D. H.; Lee, S. H.; Park, J. H.; Park, C. B.; Jeong, K. J. J. Ind. Eng. Chem. 2016, 33, 28.
doi: 10.1016/j.jiec.2015.10.002
Karande, R.; Schmid, A.; Buehler, K. Org. Process Res. Dev. 2016, 20, 361.
doi: 10.1021/acs.oprd.5b00352
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434