Citation: Huang Rongyi, Shen Qiong, Zhang Chao, Zhang Shaoyong, Xu Heng. Studies on the Mechanism of the Transition Metal-Catalyzed Reaction of Organonitrile with Sodium Azide[J]. Acta Chimica Sinica, ;2020, 78(6): 565-571. doi: 10.6023/A20030084 shu

Studies on the Mechanism of the Transition Metal-Catalyzed Reaction of Organonitrile with Sodium Azide

  • Corresponding author: Huang Rongyi, aqhuangry@hotmail.com Xu Heng, aqxuhengg@163.com
  • Received Date: 24 March 2020
    Available Online: 14 May 2020

    Fund Project: the National Natural Science Foundation of China 21975003Project supported by the National Natural Science Foundation of China (No. 21975003) and the Program for Innovative Research Team in Anqing Normal University

Figures(13)

  • The study on the reaction mechanism of organonitrile and sodium azide catalyzed by transition metals has always been a challenging and controversial task. Due to the difficulty in capturing the reaction intermediates, there is still no direct evidence to uncover the nature of the reaction. In this paper, the reaction mechanism has been explored by using a combining theoretical and experimental method. Based on the theoretical analysis of the stability of two types of intermediates (H2O)3M…N3- and (H2O)3M…NCCH3 and the successful capture of two activated intermediates containing metal cadmium ions Cd2(μ3-N3)(μ3-OH)(μ5-CHDA) (1) and Cd(μ2-N3)(μ3-IBA) (2) (H2CHDA=1, 3-cycloadipic acid and HIBA=4-(imi-dazol-1-yl) benzoic acid), which were achieved under the hydrothermal conditions and characterized by single-crystal XRD analysis. For the first time, the experimental and theoretical results reveal that the transition metal ions activate the azide rather than the cyano group of nitriles. In addition, the results of both the electrostatic potential basins analysis of activated intermediates (H2O)3M…N3- and acetonitrile molecules obtained by the theoretical calculation and our recently reported experimental results reveal that the intermediates (H2O)3M…N3- can be used as electrophilic reagent. Its uncoordinated terminal N atom can attack the N atom of the cyano group of acetonitrile to undergo a nucleophilic addition reaction during the chemical reaction progress, and then it may undergo a[2+3] cycloaddition reaction to in-situ form tetrazole. Moreover, with the aid of water molecules, its adducts may also occur similar to the Ritter-like reaction to in-situ form polynitrogen anion. Our findings may open a novel field of the in-situ synthesis of polynitrogen compounds based on the transition metal-catalyzed reactions of organonitrile and azide.
  • 加载中
    1. [1]

      Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2110.  doi: 10.1002/1521-3773(20020617)41:12<2110::AID-ANIE2110>3.0.CO;2-7

    2. [2]

      Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2113.  doi: 10.1002/1521-3773(20020617)41:12<2113::AID-ANIE2113>3.0.CO;2-Q

    3. [3]

      Wu, T.; Yi, B. H.; Li, D. Inorg. Chem. 2005, 44, 4130.  doi: 10.1021/ic050063o

    4. [4]

      Ye, Q.; Wang, X. S.; Zhao, H.; Xiong, R. G. Chem. Soc. Rew. 2005, 34, 208.  doi: 10.1039/B407253G

    5. [5]

      Chen, X. M.; Tong, M. L. Acc. Chem. Res. 2007, 40, 162.  doi: 10.1021/ar068084p

    6. [6]

      Li, J. R.; Tao, Y.; Yu, Q.; Bu, X. H. Chem. Commun. 2007, 1527.
       

    7. [7]

      Zhao, H.; Qu, Z. R.; Ye, H. Y.; Xiong, R. G. Chem. Soc. Rev. 2008, 37, 84.  doi: 10.1039/B616738C

    8. [8]

      Shang, J.; Zhang, J.; Cui, Y.; Zhang, T.; Shu, Y.; Yang, L. Acta Chim. Sinica 2010, 68, 233 (in Chinese).
       

    9. [9]

      Cantillo, D.; Gutmann, B.; Oliver Kappe, C. J. Am. Chem. Soc. 2011, 133, 4465.  doi: 10.1021/ja109700b

    10. [10]

      Wang, S. H.; Zheng, F. K.; Wu, M. F.; Liu, Z. F.; Chen, J.; Guo, G. C.; Wu, A. Q. CrystEngComm 2013, 15, 2616.  doi: 10.1039/c3ce27048c

    11. [11]

      Li, X.; Cheng, L.; Fang, W.; Yang, G. Acta Chim. Sinica 2013, 71, 179 (in Chinese).
       

    12. [12]

      Feng, Y.; Liu, X.; Duan, L.; Yang, Q.; Wei, Q.; Xie, G.; Chen, S.; Yang, X.; Gao, S. Dalton Trans. 2015, 44, 2333.  doi: 10.1039/C4DT03131H

    13. [13]

      Liu, X.; Gao, W.; Sun, P.; Su, Z.; Chen, S.; Wei, Q.; Xie, G.; Gao, S. Green Chem. 2015, 17, 831.  doi: 10.1039/C4GC02184C

    14. [14]

      Xiong, R. G.; Xue, X.; Zhao, H.; You, X. Z.; Abrahams, B. F.; Xue, Z. Angew. Chem., Int. Ed. 2002, 41, 3800.  doi: 10.1002/1521-3773(20021018)41:20<3800::AID-ANIE3800>3.0.CO;2-3

    15. [15]

      Jin, T.; Kitahara, F. K.; Kamijo, S.; Yamamoto, Y. Chem. Asian J. 2008, 3, 1575.  doi: 10.1002/asia.200800085

    16. [16]

      Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983.  doi: 10.1021/ja030204q

    17. [17]

      Zhong, D. C.; Wen, Y. Q.; Deng, J. H.; Luo, X. Z.; Gong, Y. N.; Lu, T. B. Angew. Chem., Int. Ed. 2015, 54, 11795.  doi: 10.1002/anie.201505118

    18. [18]

      Cantillo, D.; Gutmann, B.; Kappe, C. O. J. Am. Chem. Soc. 2011, 133, 4465.  doi: 10.1021/ja109700b

    19. [19]

      Huang, R. Y.; Zhang, C.; Yan, D.; Xiong, Z.; Xu, H.; Ren, X. M. RSC Adv. 2018, 8, 39929.  doi: 10.1039/C8RA08486F

    20. [20]

      Bader, R. F. W.; Essén, H. J. Chem. Phys. 1984, 80, 1943.
       

    21. [21]

      Crèmer, D.; Kraka, E. Croat. Chem. Acta 1984, 57, 1259.

    22. [22]

      Cremer, D.; Kraka, E. Angew. Chem., Int. Ed. 1984, 23, 67.  doi: 10.1002/anie.198400671

    23. [23]

      Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem. Phys. 2004, 387, 481.

    24. [24]

      Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. 1948, 70, 4045.  doi: 10.1021/ja01192a022

    25. [25]

      Ritter, J. J.; Kalish, J. J. Am. Chem. Soc. 1948, 70, 4048.  doi: 10.1021/ja01192a023

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

    27. [27]

      Becke, A. D. Phys. Rev. A 1998, 38, 3098.
       

    28. [28]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    29. [29]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  doi: 10.1063/1.464913

    30. [30]

      Andrae, D.; Häuerman, U.; Dolg, M.; Stoll, H.; Preu, H. Theor. Chim. Acta 1990, 77, 123.  doi: 10.1007/BF01114537

    31. [31]

      Bader, R. F. W. Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, 1990.

    32. [32]

      Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.  doi: 10.1080/00268977000101561

    33. [33]

      Lu, T.; Chen, F. W. J. Comp. Chem. 2012, 33, 580.  doi: 10.1002/jcc.22885

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(16)
  • Abstract views(1182)
  • HTML views(335)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return