Citation: Guo Zhenbin, Zhang Yuanyuan, Feng Xiao. Separation and Purification of C4~C6 Hydrocarbons Using Metal-organic Frameworks[J]. Acta Chimica Sinica, ;2020, 78(5): 397-406. doi: 10.6023/A20030081 shu

Separation and Purification of C4~C6 Hydrocarbons Using Metal-organic Frameworks

  • Corresponding author: Zhang Yuanyuan, 6120190112@bit.edu.cn
  • Received Date: 21 March 2020
    Available Online: 20 April 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21922502, 21674012)the National Natural Science Foundation of China 21922502the National Natural Science Foundation of China 21674012

Figures(8)

  • As important chemical raw materials and energy source, C4~C6 hydrocarbons are mainly used to produce polymer rubber, plastics and high-quality gasoline, which requires high purity of the raw materials. For example, the purity requirement in 1, 3-butadiene polymerization reactor is higher than 99.5%. When producing butyl rubber, tert-butylamine, pivalic acid, etc., the purity of isobutylene should surpass 99%. In the traditional petrochemical industry, C4~C6 hydrocarbons are mostly separated and purified through distillation, yet suffering from large energy consumption, high equipment cost and poor economic benefits. Adsorption separation with solid adsorbents can not only reduce energy cost and environmental footprints, but also improve separation efficiency. Metal-organic frameworks (MOFs) are a class of crystalline porous materials assembled from metal ions or clusters and organic linkers. Compared with zeolite, activated carbon and silica gel, MOFs feature high porosity, well-defined open channels, rich functional groups and diverse structures, showing great potentials in gas storage and separation, sensing, catalysis, photoelectric devices, drug release and delivery. Up to now, there have been many reports on separation and purification of C4~C6 hydrocarbons using MOFs by different mechanisms. Specifically, highly selective separation can be achieved by precisely adjusting the size and shape of the MOF channels to match the size of the target molecule. Besides, selecting MOFs with specific functional groups, open metal sites or flexible skeletons to regulate the interactions between the gas molecules and backbone, can also achieve efficient separation. This review introduced the importance of C4~C6 hydrocarbons separation and summarized the current research progress of using MOFs to separate and purify C4~C6 hydrocarbons. In addition, we also summed up the challenges of using MOFs as industrial adsorbents and pointed out the possible research directions in the future, which may provide ideas for designing new MOFs with high performance for crucial separation processes.
  • 加载中
    1. [1]

      Bender, M. ChemBioEng Rev. 2014, 1, 136.  doi: 10.1002/cben.201400016

    2. [2]

      Gehre, M.; Guo, Z.; Rothenberg, G.; Tanase, S. ChemSusChem 2017, 10, 3947.  doi: 10.1002/cssc.201700657

    3. [3]

      Ed.: Myers, R. A. Handbook of Petroleum Refining Processes, McGraw-Hill, New York, 2004.

    4. [4]

      Greensfelder, B. S.; Voge, H. H. Ind. Eng. Chem. Res. 1945, 37, 514.  doi: 10.1021/ie50426a008

    5. [5]

      Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.  doi: 10.1039/b802426j

    6. [6]

      Tijsebaert, B.; Varszegi, C.; Gies, H.; Xiao, F. S.; Bao, X.; Tatsumi, T.; Muller, U.; De Vos, D. Chem. Commun. 2008, 2480.

    7. [7]

      (a) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Science 2005, 310, 1166. (b) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334. (c) Ferey, G. Chem. Soc. Rev. 2008, 37, 191. (d) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166. (e) Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391. (f) Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T.
J. Am. Chem. Soc. 2012, 134, 15016.

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

      (a) Cui, W. G.; Hu, T. L.; Bu, X. H. Adv. Mater. 2019, 32, 1806445. (b) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.

    13. [13]

      Sircar, S.; Mohr, R.; Ristic, C.; Rao, M. B. J. Phys. Chem. B 1999, 103, 6539.  doi: 10.1021/jp9903817

    14. [14]

      Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Langmuir 2008, 24, 8634.  doi: 10.1021/la8008656

    15. [15]

      Schoonheydt, R. A.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2009, 11, 2794.  doi: 10.1039/b905015a

    16. [16]

      Barnett, B. R.; Parker, S. T.; Paley, M. V.; Gonzalez, M. I.; Biggins, N.; Oktawiec, J.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 18325.  doi: 10.1021/jacs.9b09942

    17. [17]

      Jiao, J.; Liu, H.; Bai, D.; He, Y. Inorg. Chem. 2016, 55, 3974.  doi: 10.1021/acs.inorgchem.6b00253

    18. [18]

      Kim, H.; Park, J.; Jung, Y. Phys. Chem. Chem. Phys. 2013, 15, 19644.  doi: 10.1039/c3cp52980k

    19. [19]

      Jiao, J.; Liu, H.; Bai, D.; He, Y. Inorg. Chem. 2016, 55, 3974.  doi: 10.1021/acs.inorgchem.6b00253

    20. [20]

      Zhang, Z.; Yang, Q.; Cui, X.; Yang, L.; Bao, Z.; Ren, Q.; Xing, H. Angew. Chem., Int. Ed. 2017, 56, 16282.  doi: 10.1002/anie.201708769

    21. [21]

      Cui, J.; Zhang, Z.; Tan, B.; Zhang, Y.; Wang, P.; Cui, X.; Xing, H. Chem. Asian. J. 2019, 14, 3572.  doi: 10.1002/asia.201900735

    22. [22]

      Lange, M.; Kobalz, M.; Bergmann, J.; Lässig, D.; Lincke, J.; Möllmer, J.; Möller, A.; Hofmann, J.; Krautscheid, H.; Staudt, R.; Gläser, R. J. Mater. Chem. A 2014, 2, 8075.  doi: 10.1039/C3TA15331B

    23. [23]

      Kishida, K.; Okumura, Y.; Watanabe, Y.; Mukoyoshi, M.; Bracco, S.; Comotti, A.; Sozzani, P.; Horike, S.; Kitagawa, S. Angew. Chem., Int. Ed. 2016, 55, 13784.
  doi: 10.1002/anie.201607676

    24. [24]

      Liao, P.-Q.; Huang, N.-Y.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. Science 2017, 356, 1193.  doi: 10.1126/science.aam7232

    25. [25]

      Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390.  doi: 10.1002/anie.200502844

    26. [26]

      Herm, Z. R.; Wiers, B. M.; Mason, J. A.; Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Science 2013, 340, 960.  doi: 10.1126/science.1234071

    27. [27]

      Mendes, P. A. P.; Horcajada, P.; Rives, S.; Ren, H.; Rodrigues, A. E.; Devic, T.; Magnier, E.; Trens, P.; Jobic, H.; Ollivier, J.; Maurin, G.; Serre, C.; Silva, J. A. C. Adv. Funct. Mater. 2014, 24, 7666.  doi: 10.1002/adfm.201401974

    28. [28]

      Assen, A. H.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Xue, D. X.; Jiang, H.; Eddaoudi, M. Angew. Chem., Int. Ed. 2015, 54, 14353.  doi: 10.1002/anie.201506345

    29. [29]

      Wang, H.; Dong, X.; Lin, J.; Teat, S. J.; Jensen, S.; Cure, J.; Alexandrov, E. V.; Xia, Q.; Tan, K.; Wang, Q.; Olson, D. H.; Proserpio, D. M.; Chabal, Y. J.; Thonhauser, T.; Sun, J.; Han, Y.; Li, J. Nat. Commun. 2018, 9, 1745.  doi: 10.1038/s41467-018-04152-5

    30. [30]

      Wang, H.; Dong, X.; Velasco, E.; Olson, D. H.; Han, Y.; Li, J. Energy Environ. Sci. 2018, 11, 1226.  doi: 10.1039/C8EE00459E

    31. [31]

      Ding, N.; Li, H.-W.; Wang, Q.-Y.; Wang, S.; Ma, L.; Zhou, J.-W.; Wang, B. J. Am. Chem. Soc. 2016, 138, 10100.  doi: 10.1021/jacs.6b06051

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(33)
  • Abstract views(2197)
  • HTML views(337)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return