Citation: Fan Lei, Jiang Qunying, Pan Min, Wang Wenxiao, Zhang Li, Liu Xiaoqing. Dual-Mode Sensing of Biomarkers by Mimic Enzyme-Natural Enzyme Cascade Signal Amplification[J]. Acta Chimica Sinica, ;2020, 78(5): 419-426. doi: 10.6023/A20030079 shu

Dual-Mode Sensing of Biomarkers by Mimic Enzyme-Natural Enzyme Cascade Signal Amplification

  • Corresponding author: Liu Xiaoqing, xiaoqingliu@whu.edu.cn
  • Received Date: 19 March 2020
    Available Online: 6 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 81602610) and the Fundamental Research Funds for the Central Universities (No. 2042018kf1006)the National Natural Science Foundation of China 81602610the Fundamental Research Funds for the Central Universities 2042018kf1006

Figures(8)

  • Highly sensitive and accurate analysis of significant biomarkers such as alkaline phosphatase (ALP) is essential for early detection and treatment of diseases. In this work, a fluorescence/UV-vis dual-mode sensing platform was constructed for amplified detection of ALP and pyrophosphate ion (PPi) based on mimic enzyme-natural enzyme cascade reactions. Cu-Based metal-organic frameworks HKUST-1 which possesses of oxidase-like activity and can effectively catalyze the oxidation of indicator o-phenylenediamine (OPD) by the surface-active sites were prepared. The oxidation products of OPD exhibit strong UV-vis absorption and fluorescent signals at 416 and 568 nm, respectively. After adding PPi, the catalytic activity of HKUST-1 was selectively inhibited due to the combination of PPi with Cu2+ on the surface of HKUST-1, that resulted in fluorescence and UV-vis signal reducing. Once ALP was introduced into the system, PPi can be specifically hydrolyzed into phosphate ions (Pi), and the oxidase-like activity of HKUST-1 recovered. Thus, the fluorescent and UV-vis signals were regenerated by an ALP-triggered mimic enzyme-natural enzyme cascade reaction. On account of the inhibition of oxidase-like activity of HKUST-1 by PPi and the recovery by ALP, an ultrasensitive dual-mode sensing platform of biomarkers based on mimic enzyme-natural enzyme cascade reactions has been developed. Under optimal conditions, the linear range of ALP by fluorescence/UV-vis detection is 0.02~3.5 and 0.04~3.5 nmol·L-1, and the detection limit of fluorescence and UV-vis assay is as low as 0.0078 and 0.039 nmol·L-1, respectively. As far as we know, it is the first time that the mimic enzyme-natural enzyme cascade reaction is applied to dual-mode bioanalysis. Due to the enzyme cascade amplification and dual-mode signal output, this developed strategy has the advantages of high sensitivity, low detection limit, high accuracy and reliability, and can realize ultrasensitive analysis of ALP in human serum samples, which shows great potential for clinical diagnosis.
  • 加载中
    1. [1]

      Xiong, Y.; Chen, Y.; Ju, H. Acta Chim. Sinica 2019, 77, 1221.  doi: 10.11862/CJIC.2019.153
       

    2. [2]

      Xia, L.; Cheng, Z.; Zhu, H.; Yang, Z. Acta Chim. Sinica 2019, 77, 172.
       

    3. [3]

      Chen, M.; Mu, L.; Cao, X.; She, G.; Shi, W. Chin. J. Chem. 2019, 37, 330.  doi: 10.1002/cjoc.201800539

    4. [4]

      Wang, W.; Liu, Y.; Shi, T.; Sun, J.; Mo, F.; Liu, X. Anal. Chem. 2020, 92, 1598.  doi: 10.1021/acs.analchem.9b04919

    5. [5]

      Sun, J.; Liu, F.; Yu, W.; Jiang, Q.; Hu, J.; Liu, Y.; Wang, F.; Liu, X. Nanoscale 2019, 11, 5014.  doi: 10.1039/C8NR09801H

    6. [6]

      Barrozo, A.; Duarte, F.; Bauer, P.; Carvalho, A. T. P.; Kamerlin, S. C. L. J. Am. Chem. Soc. 2015, 137, 9061.  doi: 10.1021/jacs.5b03945

    7. [7]

      Coleman, J. E. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441.  doi: 10.1146/annurev.bb.21.060192.002301

    8. [8]

      Stebbing, J.; Lit, L. C.; Zhang, H.; Darrington, R. S.; Melaiu, O.; Rudraraju, B.; Giamas, G. Oncogene 2014, 33, 939.  doi: 10.1038/onc.2013.80

    9. [9]

      Liang, J.; Kwok, R. T. K.; Shi, H.; Tang, B. Z.; Liu, B. ACS Appl. Mater. Interfaces 2013, 5, 8784.  doi: 10.1021/am4026517

    10. [10]

      Ronaghi, M.; Haramohamed, S.; Pettersson, B.; Uhlen, M.; Nyren, P. Anal. Biochem. 1996, 242, 84.  doi: 10.1006/abio.1996.0432

    11. [11]

      Steinberg, K. M.; Okbu, D. T.; Zwick, M. E. Anal. Chem. 2008, 80, 520.  doi: 10.1021/ac086027z

    12. [12]

      Farre, E. M.; Geigenberger, P.; Willmitzer, L.; Trethewey, R. N. Plant Physiol. 2000, 123, 681.  doi: 10.1104/pp.123.2.681

    13. [13]

      Dong, P.; Liu, Y.; Zhao, Y.; Wang, W.; Pan, M.; Liu, Y.; Liu, X. Sens. Actuators, B 2020, 310, 127873.  doi: 10.1016/j.snb.2020.127873

    14. [14]

      Goswami, S.; Manna, A.; Paul, S.; Aich, K.; Das, A. K.; Chakraborty, S. Dalton Trans. 2013, 42, 8078.  doi: 10.1039/c3dt50621e

    15. [15]

      Liu, Y.; Dong, P.; Jiang, Q.; Wang, F.; Pang, D. W.; Liu, X. Sens. Actuators, B 2019, 279, 334.  doi: 10.1016/j.snb.2018.10.016

    16. [16]

      Zhang, J.; Liu, H.; Meng, L. Chin. J. Org. Chem. 2019, 39, 3132.
       

    17. [17]

      Hayat, A.; Andreescu, S. Anal. Chem. 2013, 85, 10028.  doi: 10.1021/ac4020963

    18. [18]

      Wei, H.; Chen, C.; Han, B.; Wang, E. Anal. Chem. 2008, 80, 7051.  doi: 10.1021/ac801144t

    19. [19]

      Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. J. Am. Chem. Soc. 2016, 138, 1893.  doi: 10.1021/jacs.5b10340

    20. [20]

      Liu, X.; Li, Y.; Liang, J.; Zhu, W.; Xu, J.; Su, R.; Yuan, L.; Sun, C. Talanta 2016, 160, 99.  doi: 10.1016/j.talanta.2016.07.010

    21. [21]

      Wang, W.; Zhao, Y.; Jin, Y. ACS Appl. Mater. Interfaces 2013, 5, 11741.  doi: 10.1021/am4034119

    22. [22]

      Liu, Y.; Pan, M.; Wang, W.; Jiang, Q.; Wang, F.; Pang, D. W.; Liu, X. Anal. Chem. 2019, 91, 2086.  doi: 10.1021/acs.analchem.8b04517

    23. [23]

      Liang, H.; Jiang, S.; Yuan, Q.; Li, G.; Wang, F.; Zhang, Z.; Liu, J. Nanoscale 2016, 8, 6071.  doi: 10.1039/C5NR08734A

    24. [24]

      Kou, B.; Chai, Y.; Yuan, Y.; Yuan, R. Anal. Chem. 2018, 90, 10701.  doi: 10.1021/acs.analchem.8b00477

    25. [25]

      Meng, X.; Fan, K.; Yan, X. Sci. China:Life Sci. 2019, 62, 1543.  doi: 10.1007/s11427-019-1557-8

    26. [26]

      Li, Z.; Feng, K.; Zhang, W.; Ma, M.; Gu, N.; Zhang, Y. Chin. Sci. Bull. 2018, 63, 2128.
       

    27. [27]

      Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Nat. Nanotechnol. 2007, 2, 577.  doi: 10.1038/nnano.2007.260

    28. [28]

      Wang, Y.; He, C.; Li, W.; Zhang, J.; Fu, Y. Catal. Lett. 2017, 147, 2144.  doi: 10.1007/s10562-017-2106-5

    29. [29]

      Chen, J.; Patil, S.; Seal, S.; McGinnis, J. F. Nat. Nanotechnol. 2006, 1, 142.  doi: 10.1038/nnano.2006.91

    30. [30]

      Liu, X.; Wang, Q.; Zhao, H.; Zhang, L.; Su, Y.; Lv, Y. Analyst 2012, 137, 4552.  doi: 10.1039/c2an35700c

    31. [31]

      Wang, X.; Hu, Y.; Wei, H. Inorg. Chem. Front. 2016, 3, 41.  doi: 10.1039/C5QI00240K

    32. [32]

      Guo, Y.; Li, W.; Zheng, M.; Huang, Y. Acta Chim. Sinica 2014, 72, 713.
       

    33. [33]

      Cheng, H.; Zhang, L.; He, J.; Guo, W.; Zhou, Z.; Zhang, X.; Nie, S.; Wei, H. Anal. Chem. 2016, 88, 5489.  doi: 10.1021/acs.analchem.6b00975

    34. [34]

      Wang, Q.; Zhang, X.; Huang, L.; Zhang, Z.; Dong, S. Angew. Chem., Int. Ed. 2017, 56, 16082.  doi: 10.1002/anie.201710418

    35. [35]

      Xie, J.; Cao, H.; Jiang, H.; Chen, Y.; Shi, W.; Zheng, H.; Huang, Y. Anal. Chim. Acta 2013, 796, 92.  doi: 10.1016/j.aca.2013.08.008

    36. [36]

      Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213.  doi: 10.1039/b903811f

    37. [37]

      Wang, H.; Yuan, S.; Zhou, M.; Guo, L. Electroanalysis 2020, 32, 648.  doi: 10.1002/elan.201900496

    38. [38]

      Zhao, Y.; Pan, M.; Liu, F.; Liu, Y.; Dong, P.; Feng, J.; Shi, T.; Liu, X. Anal. Chim. Acta 2020, 1106, 133.  doi: 10.1016/j.aca.2020.01.055

    39. [39]

      Yang, Z. R.; Wang, M. M.; Wang, X. S.; Yin, X. B. Anal. Chem. 2017, 89, 1930.  doi: 10.1021/acs.analchem.6b04421

    40. [40]

      English, J. B.; Martell, A. E.; Motekaitis, R. J.; Murase, I. Inorg. Chim. Acta 1997, 258, 183.  doi: 10.1016/S0020-1693(96)05500-4

    41. [41]

      Huo, J.; Brightwell, M.; Hankari, S. E.; Garai, A.; Bradshaw, D. J. Mater. Chem. A 2013, 1, 15220.  doi: 10.1039/c3ta14409g

    42. [42]

      Zhu, Q.; Chen, Y.; Wang, W.; Zhang, H.; Ren, C.; Chen, H.; Chen, X. Sens. Actuators, B 2015, 210, 500.  doi: 10.1016/j.snb.2015.01.012

    43. [43]

      Ren, X.; Liu, J.; Ren, J.; Tang, F.; Meng, X. Nanoscale 2015, 7, 19641.  doi: 10.1039/C5NR04685H

    44. [44]

      Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. ACS Appl. Mater. Interfaces 2017, 9, 1352.  doi: 10.1021/acsami.6b15124

    45. [45]

      Chen, M.; Wang, Z.; Shu, J.; Jiang, X.; Wang, W.; Shi, Z. H.; Lin, Y. W. Inorg. Chem. 2017, 56, 9400.  doi: 10.1021/acs.inorgchem.7b01393

    46. [46]

      Gao, Z.; Deng, K.; Wang, X. D.; Miró, M.; Tang, D. ACS Appl. Mater. Interfaces 2014, 6, 18243.  doi: 10.1021/am505342r

    47. [47]

      Lee, D. H.; Kim, S. Y.; Hong, J. I. Angew. Chem., Int. Ed. 2004, 43, 4777.  doi: 10.1002/anie.200453914

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    9. [9]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    14. [14]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    17. [17]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    18. [18]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

Metrics
  • PDF Downloads(16)
  • Abstract views(2263)
  • HTML views(421)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return