Citation: Fan Lei, Jiang Qunying, Pan Min, Wang Wenxiao, Zhang Li, Liu Xiaoqing. Dual-Mode Sensing of Biomarkers by Mimic Enzyme-Natural Enzyme Cascade Signal Amplification[J]. Acta Chimica Sinica, ;2020, 78(5): 419-426. doi: 10.6023/A20030079 shu

Dual-Mode Sensing of Biomarkers by Mimic Enzyme-Natural Enzyme Cascade Signal Amplification

  • Corresponding author: Liu Xiaoqing, xiaoqingliu@whu.edu.cn
  • Received Date: 19 March 2020
    Available Online: 6 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 81602610) and the Fundamental Research Funds for the Central Universities (No. 2042018kf1006)the National Natural Science Foundation of China 81602610the Fundamental Research Funds for the Central Universities 2042018kf1006

Figures(8)

  • Highly sensitive and accurate analysis of significant biomarkers such as alkaline phosphatase (ALP) is essential for early detection and treatment of diseases. In this work, a fluorescence/UV-vis dual-mode sensing platform was constructed for amplified detection of ALP and pyrophosphate ion (PPi) based on mimic enzyme-natural enzyme cascade reactions. Cu-Based metal-organic frameworks HKUST-1 which possesses of oxidase-like activity and can effectively catalyze the oxidation of indicator o-phenylenediamine (OPD) by the surface-active sites were prepared. The oxidation products of OPD exhibit strong UV-vis absorption and fluorescent signals at 416 and 568 nm, respectively. After adding PPi, the catalytic activity of HKUST-1 was selectively inhibited due to the combination of PPi with Cu2+ on the surface of HKUST-1, that resulted in fluorescence and UV-vis signal reducing. Once ALP was introduced into the system, PPi can be specifically hydrolyzed into phosphate ions (Pi), and the oxidase-like activity of HKUST-1 recovered. Thus, the fluorescent and UV-vis signals were regenerated by an ALP-triggered mimic enzyme-natural enzyme cascade reaction. On account of the inhibition of oxidase-like activity of HKUST-1 by PPi and the recovery by ALP, an ultrasensitive dual-mode sensing platform of biomarkers based on mimic enzyme-natural enzyme cascade reactions has been developed. Under optimal conditions, the linear range of ALP by fluorescence/UV-vis detection is 0.02~3.5 and 0.04~3.5 nmol·L-1, and the detection limit of fluorescence and UV-vis assay is as low as 0.0078 and 0.039 nmol·L-1, respectively. As far as we know, it is the first time that the mimic enzyme-natural enzyme cascade reaction is applied to dual-mode bioanalysis. Due to the enzyme cascade amplification and dual-mode signal output, this developed strategy has the advantages of high sensitivity, low detection limit, high accuracy and reliability, and can realize ultrasensitive analysis of ALP in human serum samples, which shows great potential for clinical diagnosis.
  • 加载中
    1. [1]

      Xiong, Y.; Chen, Y.; Ju, H. Acta Chim. Sinica 2019, 77, 1221.  doi: 10.11862/CJIC.2019.153
       

    2. [2]

      Xia, L.; Cheng, Z.; Zhu, H.; Yang, Z. Acta Chim. Sinica 2019, 77, 172.
       

    3. [3]

      Chen, M.; Mu, L.; Cao, X.; She, G.; Shi, W. Chin. J. Chem. 2019, 37, 330.  doi: 10.1002/cjoc.201800539

    4. [4]

      Wang, W.; Liu, Y.; Shi, T.; Sun, J.; Mo, F.; Liu, X. Anal. Chem. 2020, 92, 1598.  doi: 10.1021/acs.analchem.9b04919

    5. [5]

      Sun, J.; Liu, F.; Yu, W.; Jiang, Q.; Hu, J.; Liu, Y.; Wang, F.; Liu, X. Nanoscale 2019, 11, 5014.  doi: 10.1039/C8NR09801H

    6. [6]

      Barrozo, A.; Duarte, F.; Bauer, P.; Carvalho, A. T. P.; Kamerlin, S. C. L. J. Am. Chem. Soc. 2015, 137, 9061.  doi: 10.1021/jacs.5b03945

    7. [7]

      Coleman, J. E. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441.  doi: 10.1146/annurev.bb.21.060192.002301

    8. [8]

      Stebbing, J.; Lit, L. C.; Zhang, H.; Darrington, R. S.; Melaiu, O.; Rudraraju, B.; Giamas, G. Oncogene 2014, 33, 939.  doi: 10.1038/onc.2013.80

    9. [9]

      Liang, J.; Kwok, R. T. K.; Shi, H.; Tang, B. Z.; Liu, B. ACS Appl. Mater. Interfaces 2013, 5, 8784.  doi: 10.1021/am4026517

    10. [10]

      Ronaghi, M.; Haramohamed, S.; Pettersson, B.; Uhlen, M.; Nyren, P. Anal. Biochem. 1996, 242, 84.  doi: 10.1006/abio.1996.0432

    11. [11]

      Steinberg, K. M.; Okbu, D. T.; Zwick, M. E. Anal. Chem. 2008, 80, 520.  doi: 10.1021/ac086027z

    12. [12]

      Farre, E. M.; Geigenberger, P.; Willmitzer, L.; Trethewey, R. N. Plant Physiol. 2000, 123, 681.  doi: 10.1104/pp.123.2.681

    13. [13]

      Dong, P.; Liu, Y.; Zhao, Y.; Wang, W.; Pan, M.; Liu, Y.; Liu, X. Sens. Actuators, B 2020, 310, 127873.  doi: 10.1016/j.snb.2020.127873

    14. [14]

      Goswami, S.; Manna, A.; Paul, S.; Aich, K.; Das, A. K.; Chakraborty, S. Dalton Trans. 2013, 42, 8078.  doi: 10.1039/c3dt50621e

    15. [15]

      Liu, Y.; Dong, P.; Jiang, Q.; Wang, F.; Pang, D. W.; Liu, X. Sens. Actuators, B 2019, 279, 334.  doi: 10.1016/j.snb.2018.10.016

    16. [16]

      Zhang, J.; Liu, H.; Meng, L. Chin. J. Org. Chem. 2019, 39, 3132.
       

    17. [17]

      Hayat, A.; Andreescu, S. Anal. Chem. 2013, 85, 10028.  doi: 10.1021/ac4020963

    18. [18]

      Wei, H.; Chen, C.; Han, B.; Wang, E. Anal. Chem. 2008, 80, 7051.  doi: 10.1021/ac801144t

    19. [19]

      Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. J. Am. Chem. Soc. 2016, 138, 1893.  doi: 10.1021/jacs.5b10340

    20. [20]

      Liu, X.; Li, Y.; Liang, J.; Zhu, W.; Xu, J.; Su, R.; Yuan, L.; Sun, C. Talanta 2016, 160, 99.  doi: 10.1016/j.talanta.2016.07.010

    21. [21]

      Wang, W.; Zhao, Y.; Jin, Y. ACS Appl. Mater. Interfaces 2013, 5, 11741.  doi: 10.1021/am4034119

    22. [22]

      Liu, Y.; Pan, M.; Wang, W.; Jiang, Q.; Wang, F.; Pang, D. W.; Liu, X. Anal. Chem. 2019, 91, 2086.  doi: 10.1021/acs.analchem.8b04517

    23. [23]

      Liang, H.; Jiang, S.; Yuan, Q.; Li, G.; Wang, F.; Zhang, Z.; Liu, J. Nanoscale 2016, 8, 6071.  doi: 10.1039/C5NR08734A

    24. [24]

      Kou, B.; Chai, Y.; Yuan, Y.; Yuan, R. Anal. Chem. 2018, 90, 10701.  doi: 10.1021/acs.analchem.8b00477

    25. [25]

      Meng, X.; Fan, K.; Yan, X. Sci. China:Life Sci. 2019, 62, 1543.  doi: 10.1007/s11427-019-1557-8

    26. [26]

      Li, Z.; Feng, K.; Zhang, W.; Ma, M.; Gu, N.; Zhang, Y. Chin. Sci. Bull. 2018, 63, 2128.
       

    27. [27]

      Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Nat. Nanotechnol. 2007, 2, 577.  doi: 10.1038/nnano.2007.260

    28. [28]

      Wang, Y.; He, C.; Li, W.; Zhang, J.; Fu, Y. Catal. Lett. 2017, 147, 2144.  doi: 10.1007/s10562-017-2106-5

    29. [29]

      Chen, J.; Patil, S.; Seal, S.; McGinnis, J. F. Nat. Nanotechnol. 2006, 1, 142.  doi: 10.1038/nnano.2006.91

    30. [30]

      Liu, X.; Wang, Q.; Zhao, H.; Zhang, L.; Su, Y.; Lv, Y. Analyst 2012, 137, 4552.  doi: 10.1039/c2an35700c

    31. [31]

      Wang, X.; Hu, Y.; Wei, H. Inorg. Chem. Front. 2016, 3, 41.  doi: 10.1039/C5QI00240K

    32. [32]

      Guo, Y.; Li, W.; Zheng, M.; Huang, Y. Acta Chim. Sinica 2014, 72, 713.
       

    33. [33]

      Cheng, H.; Zhang, L.; He, J.; Guo, W.; Zhou, Z.; Zhang, X.; Nie, S.; Wei, H. Anal. Chem. 2016, 88, 5489.  doi: 10.1021/acs.analchem.6b00975

    34. [34]

      Wang, Q.; Zhang, X.; Huang, L.; Zhang, Z.; Dong, S. Angew. Chem., Int. Ed. 2017, 56, 16082.  doi: 10.1002/anie.201710418

    35. [35]

      Xie, J.; Cao, H.; Jiang, H.; Chen, Y.; Shi, W.; Zheng, H.; Huang, Y. Anal. Chim. Acta 2013, 796, 92.  doi: 10.1016/j.aca.2013.08.008

    36. [36]

      Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213.  doi: 10.1039/b903811f

    37. [37]

      Wang, H.; Yuan, S.; Zhou, M.; Guo, L. Electroanalysis 2020, 32, 648.  doi: 10.1002/elan.201900496

    38. [38]

      Zhao, Y.; Pan, M.; Liu, F.; Liu, Y.; Dong, P.; Feng, J.; Shi, T.; Liu, X. Anal. Chim. Acta 2020, 1106, 133.  doi: 10.1016/j.aca.2020.01.055

    39. [39]

      Yang, Z. R.; Wang, M. M.; Wang, X. S.; Yin, X. B. Anal. Chem. 2017, 89, 1930.  doi: 10.1021/acs.analchem.6b04421

    40. [40]

      English, J. B.; Martell, A. E.; Motekaitis, R. J.; Murase, I. Inorg. Chim. Acta 1997, 258, 183.  doi: 10.1016/S0020-1693(96)05500-4

    41. [41]

      Huo, J.; Brightwell, M.; Hankari, S. E.; Garai, A.; Bradshaw, D. J. Mater. Chem. A 2013, 1, 15220.  doi: 10.1039/c3ta14409g

    42. [42]

      Zhu, Q.; Chen, Y.; Wang, W.; Zhang, H.; Ren, C.; Chen, H.; Chen, X. Sens. Actuators, B 2015, 210, 500.  doi: 10.1016/j.snb.2015.01.012

    43. [43]

      Ren, X.; Liu, J.; Ren, J.; Tang, F.; Meng, X. Nanoscale 2015, 7, 19641.  doi: 10.1039/C5NR04685H

    44. [44]

      Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. ACS Appl. Mater. Interfaces 2017, 9, 1352.  doi: 10.1021/acsami.6b15124

    45. [45]

      Chen, M.; Wang, Z.; Shu, J.; Jiang, X.; Wang, W.; Shi, Z. H.; Lin, Y. W. Inorg. Chem. 2017, 56, 9400.  doi: 10.1021/acs.inorgchem.7b01393

    46. [46]

      Gao, Z.; Deng, K.; Wang, X. D.; Miró, M.; Tang, D. ACS Appl. Mater. Interfaces 2014, 6, 18243.  doi: 10.1021/am505342r

    47. [47]

      Lee, D. H.; Kim, S. Y.; Hong, J. I. Angew. Chem., Int. Ed. 2004, 43, 4777.  doi: 10.1002/anie.200453914

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(15)
  • Abstract views(2075)
  • HTML views(417)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return