Citation: Wan Rui-Chen, Wu Si-Guo, Liu Jun-Liang, Jia Jian-Hua, Huang Guo-Zhang, Li Quan-Wen, Tong Ming-Liang. Modulation of Slow Magnetic Relaxation for Tb(Ⅲ)-Metallacrown Complexes by Controlling Axial Halide Coordination[J]. Acta Chimica Sinica, ;2020, 78(5): 412-418. doi: 10.6023/A20030077 shu

Modulation of Slow Magnetic Relaxation for Tb(Ⅲ)-Metallacrown Complexes by Controlling Axial Halide Coordination

  • Corresponding author: Jia Jian-Hua, jiajh3@mail.sysu.edu.cn Tong Ming-Liang, tongml@mail.sysu.edu.cn
  • † These authors contributed equally to this work.
  • Received Date: 19 March 2020
    Available Online: 20 April 2020

    Fund Project: the National Natural Science Foundation of China 21620102002the Fundamental Research Funds for Central Universities 19lgyjs31the Science and Technology Plan of Guangzhou 201806010192the Natural Science Foundation of Guangdong Province 2017A030313059Project supported by the National Natural Science Foundation of China (Nos. 21771198, 21620102002), the Natural Science Foundation of Guangdong Province (No. 2017A030313059), the Science and Technology Plan of Guangzhou (No. 201806010192) and the Fundamental Research Funds for Central Universities (No. 19lgyjs31)the National Natural Science Foundation of China 21771198

Figures(8)

  • Single-molecule magnets (SMMs), exhibiting magnetic bistability and slow magnetization relaxation, have fascinated scientific community for their promising applications in data storage and information processing. Great development has been achieved in lanthanide-based SMMs due to the unquenched orbital momentum and strong anisotropy of lanthanide ions. According to the crystal-field theory, the magnetic anisotropy of lanthanide ions arises from crystal-field splitting. Appropriate arrangement of coordination environment of lanthanide ion (including the local symmetry as well as the charge distribution) is key to design high-performance SMMs. However, it still remains a huge challenge to generate lanthanide-containing compounds with certain coordination environment. Taking advantage of metallacrown (MC) approach, herein a series of 3d-4f complexes {TbNi5X2} (X=F, Cl, Br) were successfully isolated via solvothermal reactions. To obtain these complexes, a mixture of stoichiometric metal salt and quinaldichdroxamic acid with excess of pyridine derivative was dissolved in methanol and then heated at 75℃ for 2 d. X-ray single-crystal diffraction analysis indicated that the Tb(Ⅲ) site equatorially coordinates with[15-MCNi(Ⅱ)-5], whilst is axially capped by halide ions. As a result, the lanthanide ion possesses high axiality with a pentagonal bipyramid geometry (D5h). Alternative current magnetic susceptibility data revealed that the electrostatic interactions between f-electrons and ligand electrons play an important role in modulating the magnetic relaxation dynamics. Maximizing the axial charge density in {TbNi5F2} where the[F-Ln-F]+ moiety is firstly reported in lanthanide chemistry, the oblate Tb(Ⅲ) is placed in a judicious crystal field. The out-of-phase signal of {TbNi5F2} shows obvious temperature and frequency dependence under 1 kOe applied dc field. Additionally, the slow magnetization relaxation of {TbNi5F2} can be fitted by the power law or Arrhenius plot with reversal barrier of 19.0 K. By lowering the electrostatic interactions of axial ligation, the out-of-phase signal significantly weakens in {TbNi5Cl2} and even vanishes in {TbNi5Br2}. The decline of magnetic anisotropy in {TbNi5Cl2} and {TbNi5Br2} accelerates the fast quantum tunneling of magnetization. The results demonstrate for the first time that the Off/Part/On slow magnetization relaxation can be modulated via the improvement of electronegativity of axial ligands.
  • 加载中
    1. [1]

      Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.  doi: 10.1038/365141a0

    2. [2]

      Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets, Oxford University Press, Oxford, 2006.

    3. [3]

      Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Acc. Chem. Res. 2016, 49, 2381.  doi: 10.1021/acs.accounts.6b00222

    4. [4]

      Ungur, L.; Lin, S.-Y.; Tang, J.; Chibotaru, L. F. Chem. Soc. Rev. 2014, 43, 6894.  doi: 10.1039/C4CS00095A

    5. [5]

      McClain, K. R.; Gould, C. A.; Chakarawet, K.; Teat, S. J.; Groshens, T. J.; Long, J. R.; Harvey, B. G. Chem. Sci. 2018, 9, 8492.  doi: 10.1039/C8SC03907K

    6. [6]

      Gould, C. A.; McClain, K. R.; Yu, J. M.; Groshens, T. J.; Furche, F.; Harvey, B. G.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 12967.  doi: 10.1021/jacs.9b05816

    7. [7]

      Goodwin, C. A.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P. Nature 2017, 548, 439.  doi: 10.1038/nature23447

    8. [8]

      Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamaki, A.; Layfield, R. A. Angew. Chem., Int. Ed. 2017, 56, 11445.  doi: 10.1002/anie.201705426

    9. [9]

      Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamaki, A.; Layfield, R. A. Science 2018, 362, 1400.  doi: 10.1126/science.aav0652

    10. [10]

      Guo, P.-H.; Liao, X.-F.; Leng, J.-D.; Tong, M.-L. Acta Chim. Sinica 2013, 71, 173.
       

    11. [11]

      Tian, H.-Q.; Zheng, L.-M. Acta Chim. Sinica 2020, 78, 34.
       

    12. [12]

      Velkos, G.; Krylov, D. S.; Kirkpatrick, K.; Spree, L.; Dubrovin, V.; Bgchner, B.; Avdoshenko, S. M.; Bezmelnitsyn, V.; Davis, S.; Faust, P.; Duchamp, J.; Dorn, H. C.; Popov, A. A. Angew. Chem., Int. Ed. 2019, 58, 5891.  doi: 10.1002/anie.201900943

    13. [13]

      Li, H.; Meng, X.; Wang, M.; Wang, Y.-X.; Shi, W.; Cheng, P. Chin. J. Chem. 2019, 37, 373.  doi: 10.1002/cjoc.201800589

    14. [14]

      Gou, X.-S.; Wang, M.-M.; Meng, Q.-Q.; Cheng, P. Chin. J. Inorg. Chem. 2019, 35, 2013.  doi: 10.11862/CJIC.2019.232

    15. [15]

      Yan, H.; Li, Q.-W.; Liu, J.-L.; Jia, J.-H.; Tong, M.-L. J. Chin. Soc. Rare Earths 2016, 34, 726. 

    16. [16]

      Liu, K.; Zhang, X.; Meng, X.; Shi, W.; Cheng, P.; Powell, A. K. Chem. Soc. Rev. 2016, 45, 2423.  doi: 10.1039/C5CS00770D

    17. [17]

      (a) Sievers, J. Z. Phys. B: Condens. Matter 1982, 45, 289. (b) Rinehart, J. D.; Long, J. R. Chem. Sci. 2011, 2, 2078.

    18. [18]

      Liu, J.-L.; Chen, Y.-C.; Zheng, Y.-Z.; Lin, W.-Q.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Tong, M.-L. Chem. Sci. 2013, 4, 3310.  doi: 10.1039/c3sc50843a

    19. [19]

      Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Chem. Soc. Rev. 2018, 47, 2431.  doi: 10.1039/C7CS00266A

    20. [20]

      Liu, J.-L.; Wu, J.-Y.; Chen, Y.-C.; Mereacre, V.; Powell, A. K.; Ungur, L.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L. Angew. Chem., Int. Ed. 2014, 53, 12966.  doi: 10.1002/anie.201407799

    21. [21]

      Huang, G.-Z.; Ruan, Z.-Y.; Zheng, J.-Y.; Chen, Y.-C.; Wu, S.-G.; Liu, J.-L.; Tong, M.-L. Sci. China, Chem. 2020, 63, DOI:10.1007/s11426-020-9746-x.  doi: 10.1007/s11426-020-9746-x

    22. [22]

      Huang, G.-Z.; Ruan, Z. Y.; Zheng, J. Y.; Wu, J. Y.; Chen, Y. C.; Li, Q. W.; Akhtar, M. N.; Liu, J. L.; Tong, M. L. Sci. China, Chem. 2018, 61, 1399.  doi: 10.1007/s11426-018-9310-y

    23. [23]

      Liu, J.; Chen, Y. C.; Liu, J. L.; Vieru, V.; Ungur, L.; Jia, J. H.; Chibotaru, L. F.; Lan, Y. H.; Wernsdorfer, W.; Gao, S.; Chen, X. M.; Tong, M. L. J. Am. Chem. Soc. 2016, 138, 5441.  doi: 10.1021/jacs.6b02638

    24. [24]

      Chen, Y. C.; Liu, J. L.; Ungur, L.; Liu, J.; Li, Q. W.; Wang, L. F.; Ni, Z. P.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L. J. Am. Chem. Soc. 2016, 138, 2829.  doi: 10.1021/jacs.5b13584

    25. [25]

      Chen, Y.-C.; Liu, J.-L.; Wernsdorfer, W.; Liu, D.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L. Angew. Chem., Int. Ed. 2017, 56, 4996.  doi: 10.1002/anie.201701480

    26. [26]

      Mezei, G.; Zaleski, C. M.; Pecoraro, V. L. Chem. Rev. 2007, 107, 4933.  doi: 10.1021/cr078200h

    27. [27]

      Happ, P.; Plenk, C.; Rentschler, E. Coord. Chem. Rev. 2015, 289, 238.
       

    28. [28]

      Li, Q.-W.; Liu, J.-L.; Jia, J.-H.; Chen, Y.-C.; Liu, J.; Wang, L.-F.; Tong, M.-L. Chem. Commun. 2015, 51, 10291.  doi: 10.1039/C5CC03389F

    29. [29]

      Li, Q.-W.; Wan, R.-C.; Chen, Y.-C.; Liu, J.-L.; Wang, L.-F.; Jia, J.-H.; Chilton, N. F.; Tong, M.-L. Chem. Commun. 2016, 52, 13365.  doi: 10.1039/C6CC06924J

    30. [30]

      Carlin, R. L. Translated by Wan, C. D. Magnetochemistry, Nanjing University Press, Nanjing, 1990.

    31. [31]

      Wang, J.; Ruan, Z.-Y.; Li, Q.-W.; Chen, Y.-C.; Huang, G.-Z.; Liu, J.-L.; Reta, D.; Chilton, N. F.; Wang, Z.-X.; Tong, M.-L. Dalton Trans. 2019, 48, 1686.  doi: 10.1039/C8DT04814B

    32. [32]

      Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341.  doi: 10.1063/1.1750906

    33. [33]

      Liu, J.-L.; Yuan, K.; Leng, J.-D.; Ungur, L.; Wernsdorfer, W.; Guo, F.-S.; Chibotaru, L. F.; Tong, M.-L. Inorg. Chem. 2012, 51, 8538.  doi: 10.1021/ic301115b

    34. [34]

      Bruker, SAINT, Version V8. 37A, Madison, 2015.

    35. [35]

      Bruker, SADABS, Version 2014/5, Madison, 2014.

    36. [36]

      Bruker, SHELXTL, Software Version 6. 12, Madison, 2001.

    37. [37]

      Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

    38. [38]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.  doi: 10.1107/S0021889808042726

    39. [39]

      Spek, A. L. Acta Cryst. 2015, C71, 9.

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    3. [3]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    9. [9]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    10. [10]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    17. [17]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    18. [18]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

Metrics
  • PDF Downloads(18)
  • Abstract views(1951)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return