Citation: Wan Rui-Chen, Wu Si-Guo, Liu Jun-Liang, Jia Jian-Hua, Huang Guo-Zhang, Li Quan-Wen, Tong Ming-Liang. Modulation of Slow Magnetic Relaxation for Tb(Ⅲ)-Metallacrown Complexes by Controlling Axial Halide Coordination[J]. Acta Chimica Sinica, ;2020, 78(5): 412-418. doi: 10.6023/A20030077 shu

Modulation of Slow Magnetic Relaxation for Tb(Ⅲ)-Metallacrown Complexes by Controlling Axial Halide Coordination

  • Corresponding author: Jia Jian-Hua, jiajh3@mail.sysu.edu.cn Tong Ming-Liang, tongml@mail.sysu.edu.cn
  • † These authors contributed equally to this work.
  • Received Date: 19 March 2020
    Available Online: 20 April 2020

    Fund Project: the National Natural Science Foundation of China 21620102002the Fundamental Research Funds for Central Universities 19lgyjs31the Science and Technology Plan of Guangzhou 201806010192the Natural Science Foundation of Guangdong Province 2017A030313059Project supported by the National Natural Science Foundation of China (Nos. 21771198, 21620102002), the Natural Science Foundation of Guangdong Province (No. 2017A030313059), the Science and Technology Plan of Guangzhou (No. 201806010192) and the Fundamental Research Funds for Central Universities (No. 19lgyjs31)the National Natural Science Foundation of China 21771198

Figures(8)

  • Single-molecule magnets (SMMs), exhibiting magnetic bistability and slow magnetization relaxation, have fascinated scientific community for their promising applications in data storage and information processing. Great development has been achieved in lanthanide-based SMMs due to the unquenched orbital momentum and strong anisotropy of lanthanide ions. According to the crystal-field theory, the magnetic anisotropy of lanthanide ions arises from crystal-field splitting. Appropriate arrangement of coordination environment of lanthanide ion (including the local symmetry as well as the charge distribution) is key to design high-performance SMMs. However, it still remains a huge challenge to generate lanthanide-containing compounds with certain coordination environment. Taking advantage of metallacrown (MC) approach, herein a series of 3d-4f complexes {TbNi5X2} (X=F, Cl, Br) were successfully isolated via solvothermal reactions. To obtain these complexes, a mixture of stoichiometric metal salt and quinaldichdroxamic acid with excess of pyridine derivative was dissolved in methanol and then heated at 75℃ for 2 d. X-ray single-crystal diffraction analysis indicated that the Tb(Ⅲ) site equatorially coordinates with[15-MCNi(Ⅱ)-5], whilst is axially capped by halide ions. As a result, the lanthanide ion possesses high axiality with a pentagonal bipyramid geometry (D5h). Alternative current magnetic susceptibility data revealed that the electrostatic interactions between f-electrons and ligand electrons play an important role in modulating the magnetic relaxation dynamics. Maximizing the axial charge density in {TbNi5F2} where the[F-Ln-F]+ moiety is firstly reported in lanthanide chemistry, the oblate Tb(Ⅲ) is placed in a judicious crystal field. The out-of-phase signal of {TbNi5F2} shows obvious temperature and frequency dependence under 1 kOe applied dc field. Additionally, the slow magnetization relaxation of {TbNi5F2} can be fitted by the power law or Arrhenius plot with reversal barrier of 19.0 K. By lowering the electrostatic interactions of axial ligation, the out-of-phase signal significantly weakens in {TbNi5Cl2} and even vanishes in {TbNi5Br2}. The decline of magnetic anisotropy in {TbNi5Cl2} and {TbNi5Br2} accelerates the fast quantum tunneling of magnetization. The results demonstrate for the first time that the Off/Part/On slow magnetization relaxation can be modulated via the improvement of electronegativity of axial ligands.
  • 加载中
    1. [1]

      Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.  doi: 10.1038/365141a0

    2. [2]

      Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets, Oxford University Press, Oxford, 2006.

    3. [3]

      Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Acc. Chem. Res. 2016, 49, 2381.  doi: 10.1021/acs.accounts.6b00222

    4. [4]

      Ungur, L.; Lin, S.-Y.; Tang, J.; Chibotaru, L. F. Chem. Soc. Rev. 2014, 43, 6894.  doi: 10.1039/C4CS00095A

    5. [5]

      McClain, K. R.; Gould, C. A.; Chakarawet, K.; Teat, S. J.; Groshens, T. J.; Long, J. R.; Harvey, B. G. Chem. Sci. 2018, 9, 8492.  doi: 10.1039/C8SC03907K

    6. [6]

      Gould, C. A.; McClain, K. R.; Yu, J. M.; Groshens, T. J.; Furche, F.; Harvey, B. G.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 12967.  doi: 10.1021/jacs.9b05816

    7. [7]

      Goodwin, C. A.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P. Nature 2017, 548, 439.  doi: 10.1038/nature23447

    8. [8]

      Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamaki, A.; Layfield, R. A. Angew. Chem., Int. Ed. 2017, 56, 11445.  doi: 10.1002/anie.201705426

    9. [9]

      Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamaki, A.; Layfield, R. A. Science 2018, 362, 1400.  doi: 10.1126/science.aav0652

    10. [10]

      Guo, P.-H.; Liao, X.-F.; Leng, J.-D.; Tong, M.-L. Acta Chim. Sinica 2013, 71, 173.
       

    11. [11]

      Tian, H.-Q.; Zheng, L.-M. Acta Chim. Sinica 2020, 78, 34.
       

    12. [12]

      Velkos, G.; Krylov, D. S.; Kirkpatrick, K.; Spree, L.; Dubrovin, V.; Bgchner, B.; Avdoshenko, S. M.; Bezmelnitsyn, V.; Davis, S.; Faust, P.; Duchamp, J.; Dorn, H. C.; Popov, A. A. Angew. Chem., Int. Ed. 2019, 58, 5891.  doi: 10.1002/anie.201900943

    13. [13]

      Li, H.; Meng, X.; Wang, M.; Wang, Y.-X.; Shi, W.; Cheng, P. Chin. J. Chem. 2019, 37, 373.  doi: 10.1002/cjoc.201800589

    14. [14]

      Gou, X.-S.; Wang, M.-M.; Meng, Q.-Q.; Cheng, P. Chin. J. Inorg. Chem. 2019, 35, 2013.  doi: 10.11862/CJIC.2019.232

    15. [15]

      Yan, H.; Li, Q.-W.; Liu, J.-L.; Jia, J.-H.; Tong, M.-L. J. Chin. Soc. Rare Earths 2016, 34, 726. 

    16. [16]

      Liu, K.; Zhang, X.; Meng, X.; Shi, W.; Cheng, P.; Powell, A. K. Chem. Soc. Rev. 2016, 45, 2423.  doi: 10.1039/C5CS00770D

    17. [17]

      (a) Sievers, J. Z. Phys. B: Condens. Matter 1982, 45, 289. (b) Rinehart, J. D.; Long, J. R. Chem. Sci. 2011, 2, 2078.

    18. [18]

      Liu, J.-L.; Chen, Y.-C.; Zheng, Y.-Z.; Lin, W.-Q.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Tong, M.-L. Chem. Sci. 2013, 4, 3310.  doi: 10.1039/c3sc50843a

    19. [19]

      Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Chem. Soc. Rev. 2018, 47, 2431.  doi: 10.1039/C7CS00266A

    20. [20]

      Liu, J.-L.; Wu, J.-Y.; Chen, Y.-C.; Mereacre, V.; Powell, A. K.; Ungur, L.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L. Angew. Chem., Int. Ed. 2014, 53, 12966.  doi: 10.1002/anie.201407799

    21. [21]

      Huang, G.-Z.; Ruan, Z.-Y.; Zheng, J.-Y.; Chen, Y.-C.; Wu, S.-G.; Liu, J.-L.; Tong, M.-L. Sci. China, Chem. 2020, 63, DOI:10.1007/s11426-020-9746-x.  doi: 10.1007/s11426-020-9746-x

    22. [22]

      Huang, G.-Z.; Ruan, Z. Y.; Zheng, J. Y.; Wu, J. Y.; Chen, Y. C.; Li, Q. W.; Akhtar, M. N.; Liu, J. L.; Tong, M. L. Sci. China, Chem. 2018, 61, 1399.  doi: 10.1007/s11426-018-9310-y

    23. [23]

      Liu, J.; Chen, Y. C.; Liu, J. L.; Vieru, V.; Ungur, L.; Jia, J. H.; Chibotaru, L. F.; Lan, Y. H.; Wernsdorfer, W.; Gao, S.; Chen, X. M.; Tong, M. L. J. Am. Chem. Soc. 2016, 138, 5441.  doi: 10.1021/jacs.6b02638

    24. [24]

      Chen, Y. C.; Liu, J. L.; Ungur, L.; Liu, J.; Li, Q. W.; Wang, L. F.; Ni, Z. P.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L. J. Am. Chem. Soc. 2016, 138, 2829.  doi: 10.1021/jacs.5b13584

    25. [25]

      Chen, Y.-C.; Liu, J.-L.; Wernsdorfer, W.; Liu, D.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L. Angew. Chem., Int. Ed. 2017, 56, 4996.  doi: 10.1002/anie.201701480

    26. [26]

      Mezei, G.; Zaleski, C. M.; Pecoraro, V. L. Chem. Rev. 2007, 107, 4933.  doi: 10.1021/cr078200h

    27. [27]

      Happ, P.; Plenk, C.; Rentschler, E. Coord. Chem. Rev. 2015, 289, 238.
       

    28. [28]

      Li, Q.-W.; Liu, J.-L.; Jia, J.-H.; Chen, Y.-C.; Liu, J.; Wang, L.-F.; Tong, M.-L. Chem. Commun. 2015, 51, 10291.  doi: 10.1039/C5CC03389F

    29. [29]

      Li, Q.-W.; Wan, R.-C.; Chen, Y.-C.; Liu, J.-L.; Wang, L.-F.; Jia, J.-H.; Chilton, N. F.; Tong, M.-L. Chem. Commun. 2016, 52, 13365.  doi: 10.1039/C6CC06924J

    30. [30]

      Carlin, R. L. Translated by Wan, C. D. Magnetochemistry, Nanjing University Press, Nanjing, 1990.

    31. [31]

      Wang, J.; Ruan, Z.-Y.; Li, Q.-W.; Chen, Y.-C.; Huang, G.-Z.; Liu, J.-L.; Reta, D.; Chilton, N. F.; Wang, Z.-X.; Tong, M.-L. Dalton Trans. 2019, 48, 1686.  doi: 10.1039/C8DT04814B

    32. [32]

      Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341.  doi: 10.1063/1.1750906

    33. [33]

      Liu, J.-L.; Yuan, K.; Leng, J.-D.; Ungur, L.; Wernsdorfer, W.; Guo, F.-S.; Chibotaru, L. F.; Tong, M.-L. Inorg. Chem. 2012, 51, 8538.  doi: 10.1021/ic301115b

    34. [34]

      Bruker, SAINT, Version V8. 37A, Madison, 2015.

    35. [35]

      Bruker, SADABS, Version 2014/5, Madison, 2014.

    36. [36]

      Bruker, SHELXTL, Software Version 6. 12, Madison, 2001.

    37. [37]

      Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

    38. [38]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.  doi: 10.1107/S0021889808042726

    39. [39]

      Spek, A. L. Acta Cryst. 2015, C71, 9.

  • 加载中
    1. [1]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(17)
  • Abstract views(1714)
  • HTML views(269)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return