Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane
- Corresponding author: Qiao Zhiwei, zqiao@gzhu.edu.cn † These authors contributed equally to this work.
Citation: Cai Chengzhi, Li Lifeng, Deng Xiaomei, Li Shuhua, Liang Hong, Qiao Zhiwei. Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane[J]. Acta Chimica Sinica, ;2020, 78(5): 427-436. doi: 10.6023/A20030065
Schoots, K.; Rivera-Tinoco, R.; Verbong, G.; van der Zwaan, B. Int. J. Greenhouse Gas Control. 2011, 5, 1614.
doi: 10.1016/j.ijggc.2011.09.008
Wu, F. F. M.S. Thesis, Tianjin University, Tianjin, 2014 (in Chinese).
Ravanchi, M. T.; Kaghazchi, T.; Kargari, A.; Soleimani, M. J. Taiwan Inst. Chem. Eng. 2009, 40, 511.
doi: 10.1016/j.jtice.2009.02.007
Xie, C. L.; Fang, Y. D. Petrochem. Ind. Technol. 2005, 12, 63.
Wu, D. M.S. Thesis, Tianjin University, Tianjin, 2012 (in Chinese).
Ma, Y. T.; Cong, S. G.; Hu, Y. F. Energy Chem. Ind. 2017, 38, 34.
Zhang, H.; Liu, Y. S.; Liu, W. H.; Zhang, D. X.; Zhai, H. Chem. Ind. Eng. Prog. 2007, 26, 95.
Yu, Q. Q. M.S. Thesis, Beijing University of Chemical Technology, Beijing, 2016 (in Chinese).
Li, S. Z. M.S. Thesis, Harbin Institute of Technology, Harbin, 2011 (in Chinese).
Wu, X. J.; Zhao, P.; Fang, J. M.; Wang, J.; Liu, B. S.; Cai, W. Q. Acta Phys.-Chim. Sin. 2014, 30, 2043.
doi: 10.3866/PKU.WHXB201409222
Zhou, J. H.; Zhao, H. L.; Hu, J.; Liu, H. L.; Hu, Y. CIESC J. 2014, 65, 1680.
doi: 10.3969/j.issn.0438-1157.2014.05.018
Zhu, G. F.; Chen, L. T.; Cheng, G. H.; Zhao, J.; Yang, C.; Zhang, Y. Z.; Wang, X.; Fan, J. Acta Chim. Sinica 2019, 77, 434.
Fu, J.; Zhou, G. Y.; Hou, Z. Y.; Tian, H. C.; Xia, C. M.; Zhang, W.; Liu, J. T.; Wu, J. L.; Zhao, J. D.; Cang, X. L. Opt. Laser Technol. 2017, 91, 22.
doi: 10.1016/j.optlastec.2016.11.027
Liu, M. L.; Wu, Q.; Shi, H. F.; An, Z. F.; Huang, W. Acta Chim. Sinica 2018, 76, 246.
Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377.
doi: 10.1039/C7CC02570J
Meng, S. Y.; Wang, M. M.; Lu, B. L.; Xue, Q. J.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 1184.
doi: 10.7503/cjcu20180709
Wu, Z. M.; Shi, Y.; Li, C. Y.; Niu, D. Y.; Chu, Q.; Xiong, W.; Li, X. Y. Acta Chim. Sinica 2019, 77, 758.
Liu, R. X.; He, X. Y.; Niu, L. T.; Lv, B. L.; Yu, F.; Zhang, Z.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 653.
Cao, L. Y.; Wang, T. T.; Wang, C. Chin. J. Chem. 2018, 36,
Zou, Z.; Li, S. Q.; He, D. G.; He, X. X.; Wang, K. M.; Li, L. L.; Yang, X.; Li, H. F. J. Mater. Chem. B 2017, 5, 2126.
doi: 10.1039/C6TB03379B
Couck, S.; Van Assche, T. R.; Liu, Y. Y.; Baron, G. V.; Van Der Voort, P.; Denayer, J. F. Langmuir 2015, 31, 5063.
doi: 10.1021/acs.langmuir.5b00655
Ponraj, Y. K.; Borah, B. J. Mol. Graph. Model. 2020, 97, 107574.
doi: 10.1016/j.jmgm.2020.107574
Tang, Y. N.; Wang, S.; Zhou, X.; Wu, Y.; Xian, S. K.; Li, Z. Chem. Eng. Sci. 2020, 213, 115355.
doi: 10.1016/j.ces.2019.115355
Fan, W. D.; Wang, X.; Zhang, X. R.; Liu, X. P.; Wang, Y. T.; Kang, Z. X.; Dai, F. N.; Xu, B.; Wang, R. M.; Sun, D. F. ACS Central. Sci. 2019, 5, 1261.
doi: 10.1021/acscentsci.9b00423
Chen, Y. W.; Qiao, Z. W.; Lv, D. F.; Wu, H. X.; Shi, R. F.; Xia, Q. B.; Wang, H. H.; Zhou, J.; Li, Z. Ind. Eng. Chem. Res. 2017, 56, 4488.
doi: 10.1021/acs.iecr.6b05010
Guo, W. J.; Yu, J.; Dai, Z.; Hou, W. Z. Acta Chim. Sinica 2019, 77, 1203.
doi: 10.11862/CJIC.2019.142
Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X. T.; Xu, J. L.; Bu, X. H. Chin. J. Chem. 2019, 37, 871.
doi: 10.1002/cjoc.201900247
Qiao, W. Z.; Song, T. Q.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
doi: 10.1002/cjoc.201800587
Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242.
doi: 10.3969/j.issn.0253-2409.2019.02.014
Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156.
Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 323.
doi: 10.11862/CJIC.2019.034
Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303.
doi: 10.3866/PKU.WHXB201708302
Lan, Y. S.; Han, X. H.; Tong, M. M.; Huang, H. L.; Yang, Q. Y.; Liu, D. H.; Zhao, X.; Zhong, C. L. Nat. Commun. 2018, 9, 5274.
doi: 10.1038/s41467-018-07720-x
Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.
doi: 10.1039/C8TA04939D
Wu, X. J.; Zheng, J.; Li, J.; Cai, W. Q. Acta Phys.-Chim. Sin. 2013, 29, 2207.
doi: 10.3866/PKU.WHXB201307191
Li, W.; Xia, X. X.; Cao, M.; Li, S. J. Mater. Chem. A 2019, 7, 7470.
doi: 10.1039/C8TA07909A
Shi, Z. N.; Yang, W. Y.; Deng, X. M.; Cai, C. Z.; Yan, Y. L.; Liang, H.; Liu, Z. L.; Qiao, Z. W. Mol. Syst. Des. Eng. 2020, DOI:10.1039/d0me00005a.
doi: 10.1039/d0me00005a
Moghadam, P. Z.; Rogge, S. M. J.; Li, A.; Chow, C.-M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D. A.; Van Speybroeck, V.; Fairen-Jimenez, D. Matter 2019, 1, 219.
doi: 10.1016/j.matt.2019.03.002
Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.
doi: 10.1021/jp4006422
Shah, M. S.; Tsapatsis, M.; Siepmann, J. I. Angew. Chem. 2016, 128, 6042.
doi: 10.1002/ange.201600612
Breiman, L. I.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Encycl. Ecol. 1984, 40, 358.
Breiman, L. Mach. Learn. 2001, 45, 5.
doi: 10.1023/A:1010933404324
Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.
doi: 10.1038/nature17439
Zhang, W. G.; Goh, A. T. C. Geosci. Front. 2014, 7, 45.
Wu, X. J.; Xiang, S. C.; Su, J. Q.; Cai, W. Q. J. Phys. Chem. C 2019, 123, 8550.
Wang, X.; Zhang, X. R.; Zhang, K.; Wang, X. K.; Wang, Y. T.; Fan, W. D.; Dai, F. N. Inorg. Chem. Front. 2019, 6, 1152.
doi: 10.1039/C8QI01404C
Llewellyn, P. L.; Horcajada, P.; Maurin, G.; Devic, T.; Rosenbach, N.; Bourrelly, S.; Serre, C.; Vincent, D.; Loera-Serna, S.; Filinchuk, Y.; Férey, G. J. Am. Chem. Soc. 2009, 131, 13002.
doi: 10.1021/ja902740r
Wilmer, C. E.; Farha, O. K.; Yildirim, T.; Eryazici, I.; Krunglevi-ciute, V.; Sarjeant, A. A.; Snurr, R. Q.; Hupp, J. T. Energy Environ. Sci. 2013, 6, 1158.
doi: 10.1039/c3ee24506c
Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.
doi: 10.1038/nchem.1192
Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; III, W. A. G.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040
Martin, G. M.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
doi: 10.1021/jp972543+
Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665.
Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.
doi: 10.1021/jz401479k
Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
doi: 10.1016/j.micromeso.2011.08.020
Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2015, 42, 81.
Moghadam, P. Z.; Fairen-Jimenez, D.; Snurr, R. Q. J. Mater. Chem. A 2016, 4, 529.
doi: 10.1039/C5TA06472D
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
(a) SC1/(C2+C3)-NC1; (b) NC1-LCD; (c) SC1/(C2+C3)-LCD; (d) SC2/(C1+C3)-NC2; (e) NC2-LCD; (f) SC2/(C1+C3)-LCD; (g) NC1-SC1/(C2+C3), LCD; (h) NC2-SC1/(C2+C3), LCD. The color represents the value of TSN. Each figure contains the data of 31399 hMOFs
The color represents the value of the TSN. The figure contains the data of 31399 hMOFs
(a) RF, (b) BPNN, (c) DT, (d) SVM. The color represents the number of MOFs
(a) Relative importance of the six descriptors for NC1, NC2, NC3. The color from yellow to red represents the relative importance; (b) Design paths for optimal MOFs. The optimal and suboptimal routes are highlighted in red and blue, respectively