Citation: Guo Jinqiu, Du Yaping, Zhang Hongbo. A Brief Summary of Research Progress on the Application of Rare Earth Materials in Heterogeneous Catalysis[J]. Acta Chimica Sinica, ;2020, 78(7): 625-633. doi: 10.6023/A20030053 shu

A Brief Summary of Research Progress on the Application of Rare Earth Materials in Heterogeneous Catalysis

  • Corresponding author: Du Yaping, ypdu@nankai.edu.cn Zhang Hongbo, hbzhang@nankai.edu.cn
  • Received Date: 4 March 2020
    Available Online: 22 June 2020

    Fund Project: Nankai University 023-92022018Project supported by the "111 Project" of China (No. B18030), Nankai University (No. 023-92022018), Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology (No. KLIEEE-19-07) and Natural Science Foundation of Tianjin (No. BE122121)Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology KLIEEE-19-07Natural Science Foundation of Tianjin BE122121the "111 Project" of China B18030

Figures(11)

  • Rare earth (RE) resources are in big amount in China, which can be effectively purified based on the strategies developed by Prof. Guangxian Xu et al. last century, which sets up solid fundamentals for applied research on rare earth materials nowadays. Rare earth elements, including scandium, yttrium and lanthanides, feature stable overall chemical properties, variable valence states and coordination form as well as special Lewis acidity due to the unique electron configuration in the outermost and secondary outer orbitals of the lanthanide elements ([Xe] 4fn-15d0~16s2 (n=1~15)), especially on their 4f electron shell structure, having been extensively used in catalysis. However, the efficiency and selectivity to the desired products are always the major challenges due to the complexity of catalysis, in particular, the mechanism by which rare earth metals affect catalytic reactions through structural or electronic effects has not been clarified. Therefore, this mini-review summarizes the research progress on the application of rare earth materials in heterogeneous catalysis (specifically on thermal catalysis). Firstly, a brief summary of rare earth materials' structural properties is provided with emphasis on the unique distribution of the 4f electron. Afterward, the application of RE elements in thermal catalysis was discussed in detail. For example:(1) as a support to promote catalytic reaction, such as CeO2, which has variable chemical valence and can be used as an active support to participate in the redox reaction; (2) as moderate Lewis acid (base) center to catalyze the aldol condensation of acetaldehyde/ethanol mixture and effectively control the C-C bond coupling; (3) as electronic and structural promoters to improve catalytic activity and stability. Hence, the structure-function relationship is illustrated in accordance with the studies of the rare earth materials as the supports, Lewis acid (base) active center and catalytic promoters, suggesting great potential of rare earth materials in catalysis.
  • 加载中
    1. [1]

      Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Chem. Rev. 2015, 115, 10726.  doi: 10.1021/acs.chemrev.5b00091

    2. [2]

      Information Office of the State Council of the People's Republic of China. China Metal Bulletin 2012, 24, 20(in Chinese).

    3. [3]

      Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Li, M. L.; Zhou, Y. J.; Zhang, L. X.; Li, Y. S.; Shi, J. L. ACS Catal. 2019, 9, 4573.

    4. [4]

      Liang, M. F.; Borjigin, T.; Zhang, Y. H.; Liu, B. H.; Liu, H.; Guo, H. Appl. Catal. B: Environ. 2018, 243, 566.

    5. [5]

      Zhang, F.; Braun, G. B.; Shi, Y. F.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. J. Am. Chem. Soc. 2010, 132, 2850.

    6. [6]

      Meng, S. Y.; Wang, M. M.; Lü, B. L.; Xue, Q. J.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 1184(in Chinese).
       

    7. [7]

      Xia, J. L.; Zhao, H. Y.; Pang, W. K.; Yin, Z. Y; Zhou, B.; He, G.; Guo, Z. P.; Du, Y. P. Chem. Sci. 2018, 9, 3421.  doi: 10.1039/C7SC05185A

    8. [8]

      Ha, H. W.; Yun, N. J.; Kim, M. H.; Woo, M. H.; Kim, K. Electrochim. Acta 2006, 51, 3297.

    9. [9]

      Chen, P. L.; Chen, I. W. J. Am. Ceram. Soc. 1993, 76, 1577.  doi: 10.1111/j.1151-2916.1996.tb07998.x

    10. [10]

      Frey, A. M.; Karmee, S. K.; de Jong, K. P.; Bitter, J. H.; Hanefeld, U. ChemCatChem 2013, 5, 594.  doi: 10.1002/cctc.201200282

    11. [11]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).
       

    12. [12]

      Song, T. Y.; Xu, J. N.; Cheng, G. Z.; Wang, L. Inorganic Chemistry (Third edition), Higher Education Press, Beijing, 2014, p. 816(in Chinese).

    13. [13]

      Risse, T.; Shaikhutdinov, S.; Nilius, N.; Sterrer, M.; Freund, H. J. Acc. Chem. Res. 2008, 41, 949.  doi: 10.1021/ar800078m

    14. [14]

      Mattos, L. V.; Noronha, F. B. J. Catal. 2005, 233, 453.  doi: 10.1016/j.apcata.2005.05.015

    15. [15]

      Summers, J. C.; Ausen, S. A. J. Catal. 1979, 58, 131.  doi: 10.1016/0021-9517(79)90251-3

    16. [16]

      Yao, H. C.; Yao, Y. F. J. Catal. 1984, 86, 254.

    17. [17]

      Shyu, J. Z.; Otto, K.; Watkins, W. L. H.; Graham, G. W.; Belitz, R. K. J. Catal. 1988, 114, 23.  doi: 10.1016/0021-9517(88)90005-x

    18. [18]

      Kašpar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50, 285.  doi: 10.1016/S0920-5861(98)00510-0

    19. [19]

      Fornasiero, P.; Monte, R. D.; Rao, G. R.; Kašpar, J.; Meriani, S.; Trovarelli, A.; Graziani, M. J. Catal. 1995, 151, 168.  doi: 10.1006/jcat.1995.1019

    20. [20]

      Valsamakis, I.; Flytzani-Stephanopoulos, M. Appl. Catal. B: Environ. 2011, 106, 255.

    21. [21]

      Al-Sultan, F. S.; Basahel, S. N.; Narasimharao, K. Fuel 2018, 233, 796.  doi: 10.1016/j.fuel.2018.06.130

    22. [22]

      Zheng, T. T.; He, J. J.; Zhao, Y. K.; Xia, W. Z.; He, J. L. J. Rare Earth 2014, 32, 97.

    23. [23]

      Korneeva, E. V.; Ivanova, A. S.; Bukhtiyarova, G. A.; Aleksandrov, P. V.; Zaikovskii, V. I.; Prosvirin, I. P.; Noskov, A. S. Kinet. Catal. 2011, 52, 579.  doi: 10.1134/s0023158411030128

    24. [24]

      Mokhnachuk, O. V.; Soloviev, S. O.; Kapran, A. Y. Catal. Today 2007, 119, 145.

    25. [25]

      Lemonidou, A. A.; Vagia, E. C.; Lercher, J. A. ACS Catal. 2013, 3, 1919.  doi: 10.1021/cs4003063

    26. [26]

      Li, X. Y.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z. J.; Gong, J. L. Appl. Catal. B: Environ. 2017, 202, 683.  doi: 10.1016/j.apcatb.2016.09.071

    27. [27]

      Sodesawa, T.; Dobashi, A.; Nozaki, F. Kinet. Catal. Lett. 1979, 12, 107.  doi: 10.1007/bf02071433

    28. [28]

      Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. J. Catal. 2000, 194, 198.  doi: 10.1023/A:1019035220233

    29. [29]

      Singh, S.; Zubenko, D.; Rosen, B. A. ACS Catal. 2016, 6, 4199.  doi: 10.1021/acscatal.6b00673

    30. [30]

      Pawar, V.; Appari, S.; Monder, D. S.; Janardhanan, V. M. Ind. Eng. Chem. Res. 2017, 56, 8448.  doi: 10.1021/acs.iecr.7b01662

    31. [31]

      Dahdah, E.; Rached, J. A.; Aouad, S.; Gennequin, C.; Tidahy, H. L.; Estephane, J.; Aboukais, A.; Aad, E. A. Int. J. Hydrogen Energy 2017, 48, 12808.  doi: 10.1007/s11356-016-7480-9

    32. [32]

      Liu, H. R.; Wierzbicki, D.; Debek, R.; Motak, M.; Grzybek, T.; Costa, P. D.; Gálvez, M. E. Fuel 2016, 182, 8.  doi: 10.1016/j.fuel.2016.05.073

    33. [33]

      Tsipouriari, V. A.; Verykios, X. E. J. Catal. 1999, 187, 85.  doi: 10.1006/jcat.1999.2565

    34. [34]

      Oemar, U.; Kathiraser, Y.; Mo, L.; Ho, X. K.; Kawi, S. Catal. Sci. Technol. 2016, 6, 1173.  doi: 10.1039/C5CY00906E

    35. [35]

      Li, K.; He, F.; Yu, H. M.; Wang, Y.; Wu, Z. J. J. Catal. 2018, 364, 248.

    36. [36]

      May, Y. A.; Wang, W. W.; Yan, H.; Wei, S.; Jia, C. J. Chin. J. Catal. 2020, 41, 1017.

    37. [37]

      Zhou, Y.; Chen, A.; Ning, J.; Shen, W. J. Chin. J. Catal. 2020, 41, 928.

    38. [38]

      Si, R.; Flytzani-Stephanopoulos, M. Angew. Chem., Int. Ed. 2008, 47, 2884.  doi: 10.1002/anie.200705828

    39. [39]

      Fu, Q.; Weber, A.; Flytzani-Stephanopoulos, M. Catal. Lett. 2001, 77, 87.  doi: 10.1023/a:1012666128812

    40. [40]

      Zhang, F.; Chan, S. W.; Spanier, J. E.; Apak, E.; Jin, Q.; Robinson, R. D.; Herman, I. P. Appl. Phys. Lett. 2002, 80, 127.  doi: 10.1063/1.1430502

    41. [41]

      Gatla, S.; Aubert, D.; Agostini, G.; Mathon, O.; Pascarelli, S.; Lunkenbein, T.; Willinger, M. G.; Kaper, H. ACS Catal. 2016, 6, 6151.  doi: 10.1021/acscatal.6b00677

    42. [42]

      Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L.; Datye, A. K.; Wang, Y. Science 2017, 358, 1419.

    43. [43]

      Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y. Q.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K.; Hensen, E. J. M. Appl. Catal. B: Environ. 2019, 243, 36.

    44. [44]

      Liu, L. C.; Corma, A. Chem. Rev. 2018, 118, 4981.

    45. [45]

      Zhao, S.; Chen, F.; Duan, S. B.; Shao, B.; Li, T. B.; Tang, H. L.; Lin, Q. Q.; Zhang, J. Y.; Li, L.; Huang, J. H.; Bion, N.; Liu, W.; Sun, H.; Wang, A. Q.; Haruta, M.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Nat. Commun. 2019, 10, 3824.

    46. [46]

      Liu, J. C.; Wang, Y. G.; Li, J. J. Am. Chem. Soc. 2017, 139, 6190.

    47. [47]

      Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernandez, X. I. P.; Wang, Y.; Datye, A. K. Science 2016, 353, 150.  doi: 10.1126/science.aaf8800

    48. [48]

      Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935.  doi: 10.1126/science.1085721

    49. [49]

      Dongil, A. B.; Pastor-Perez, L.; Escalona, N.; Sepulveda-Escribano, A. Carbon 2016, 101, 296.  doi: 10.1016/j.apcata.2015.11.048

    50. [50]

      Reina, T. R.; Ivanova, S.; Centeno, M. A.; Odriozola, J. A. Appl. Catal. B: Environ. 2016, 187, 98.  doi: 10.1016/j.apcatb.2016.01.031

    51. [51]

      Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Senanayake, S. D.; White, M. G.; Chen, J. G. ACS Catal. 2015, 6, 6696.  doi: 10.1021/acscatal.5b01755

    52. [52]

      Micoud, F.; Maillard, F.; Bonnefont, A.; Job, N.; Chatenet, M. Phys. Chem. Chem. Phys. 2010, 12, 1182.  doi: 10.1039/b915244j

    53. [53]

      Li, S. W.; Xu, Y.; Chen, Y. F.; Li, W. Z.; Lin, L. L.; Li, M. Z.; Deng, Y. C.; Wang, X. P.; Ge, B. H.; Yang, C.; Yao, S. Y.; Xie, J. L.; Li, Y. W.; Liu, X.; Ma, D. Angew. Chem., Int. Ed. 2017, 56, 10761.  doi: 10.1002/ange.201705002

    54. [54]

      Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. ACS Catal. 2018, 8, 6203.  doi: 10.1021/acscatal.7b04469

    55. [55]

      Xu, J.; Chen, X. Y.; Xu, Y. S.; Du, Y. P.; Yan, C. H. Adv. Mater. 2019, 1806461.

    56. [56]

      Pudukudy, M.; Yaakob, Z.; Takriff, M. S. Energy Convers. Manage. 2016, 126, 302.  doi: 10.1016/j.enconman.2016.08.006

    57. [57]

      Pudukudy, M.; Yaakob, Z.; Jia, Q. M.; Takriff, M. S. Appl. Surf. Sci. 2019, 467~468, 236.

    58. [58]

      Lessard, J. D.; Valsamakis, I.; Flytzani-Stephanopoulos, M. Chem. Commun. 2012, 48, 4857.  doi: 10.1039/c2cc31105d

    59. [59]

      Akhmedov, V. M.; Al-Khowaiter, S. H. Catal. Rev.-Sci. Eng. 2007, 44, 455.

    60. [60]

      Jacinto, S.; Ace, M.; Delgado, J. J.; Goguet, A.; Hardacre, C.; Morgan, K. ChemCatChem 2011, 3, 394.  doi: 10.1002/ange.201102066

    61. [61]

      Wang, Z. Q.; Wang, D.; Gong, X. Q. ACS Catal. 2020, 10, 586.

    62. [62]

      Huang, Z. Q.; Zhang, T. Y.; Chang, C. R.; Li, J. ACS Catal. 2019, 9, 5523.

    63. [63]

      Sun, J. M.; Zhu, K. K.; Gao, F.; Wang, C. M.; Liu, J.; Peden, C. H. F.; Wang, Y. J. Am. Chem. Soc. 2011, 133, 11096.  doi: 10.1021/ja204235v

    64. [64]

      Ogo, S.; Onda, A.; Iwasa, Y.; Hara, K.; Fukuoka, A.; Yanagisawa, K. J. Catal. 2012, 296, 24.  doi: 10.1016/j.jcat.2012.08.019

    65. [65]

      Zhang, H. B.; Ibrahim, M. Y. S.; Flaherty, D. W. J. Catal. 2018, 361, 290.  doi: 10.1016/j.jcat.2018.02.030

    66. [66]

      Pang, J. F.; Zheng, M. Y.; He, L.; Li, L.; Pan, X. L.; Wang, A. Q.; Wang, X. D.; Zhang, T. J. Catal. 2016, 344, 184.

    67. [67]

      Moteki, T.; Flaherty, D. W. ACS Catal. 2016, 6, 4170.  doi: 10.1021/acscatal.6b00556

    68. [68]

      Dai, J. J.; Zhang, H. B. Sci. China Mater. 2019, 62, 1642.

    69. [69]

      Cota, I.; Ramírez, E.; Medina, F.; Layrac, C.; Tichit, D.; Gérardin, C. J. Mol. Catal. A: Chem. 2016, 412, 101.

    70. [70]

      Yan, T. T.; Dai, W. L.; Wu, G. J.; Lang, S.; Hunger, M.; Guan, N. J.; Li, L. D. ACS Catal. 2018, 8, 2760.  doi: 10.1021/acscatal.8b00014

    71. [71]

      Wang, Z.; Fongarland, P.; Lu, G. Z.; Essayem, N. J. Catal. 2014, 318, 108.  doi: 10.1016/j.jcat.2014.07.006

    72. [72]

      Meis, N. N. A. H.; Bitter, J. H.; de Jong, K. P. Ind. Eng. Chem. Res. 2010, 49, 1229.  doi: 10.1021/ie901114d

    73. [73]

      Álvarez, M. G.; Plísková, M.; Segarra, A. M.; Medina, F.; Figueras, F. Appl. Catal. B: Environ. 2012, 113~114, 212.

    74. [74]

      Liang, Z.; Jiang, D. H.; Fang, G. Q.; Leng, W. H.; Tu, P. X.; Tong, Y. Q.; Liu, L.; Ni, J.; Li, X. N. ChemistrySelect 2019, 4, 4364.  doi: 10.1002/slct.201900712

    75. [75]

      Zhen, K. J.; Li, R. S.; Wang, G. J.; Bi, Y. L.; Kan, Q. B. Catalysis Basics (Third edition), Science Press, Beijing, 2004, p. 239. (in Chinese).

    76. [76]

      Cunha, A. F.; Mahata, N.; Órfão, J. J. M.; Figueiredo, J. L. Energy Fuels 2009, 23, 4047.

    77. [77]

      Gao, J.; Hou, Z. Y.; Guo, J. Z.; Zhu, Y. H.; Zheng, X. M. Catal. Today 2008, 131, 278.  doi: 10.1016/j.cattod.2007.10.019

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(79)
  • Abstract views(1875)
  • HTML views(570)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return