Citation: Luo Xingrui, Chen Minwen, Yang Qinglai. Research Progress on Near Infrared Ⅱ Technology for in Vivo Imaging[J]. Acta Chimica Sinica, ;2020, 78(5): 373-381. doi: 10.6023/A20020045 shu

Research Progress on Near Infrared Ⅱ Technology for in Vivo Imaging

  • Corresponding author: Chen Minwen, ncuedu@126.com Yang Qinglai, qingyu513@126.com
  • Received Date: 26 February 2020
    Available Online: 10 April 2020

    Fund Project: Shenzhen Basic Research Funding JCYJ20170817152825894the National Natural Science Foundation of China 81801749Project supported by the National Natural Science Foundation of China (No. 81801749) and Shenzhen Basic Research Funding (Nos. JCYJ20170307151634428, JCYJ20170817152825894)Shenzhen Basic Research Funding JCYJ20170307151634428

Figures(9)

  • Near infrared Ⅱ (NIR Ⅱ, 1000~1700 nm) biological imaging, as a new developing optical imaging technology in recent years, has longer fluorescence wavelength compared with the traditional near infrared Ⅰ (NIR Ⅰ, 750~900 nm) and visible light (Vis, 400~750 nm) imaging. Due to the longer emission wavelength, weaker interference by light scattering and tissue autofluorescence, result in higher temporal and spatial resolution with deeper tissue penetration. This technology is more suitable for in vivo imaging in situ. In this review, we mainly introduced research progress on NIR Ⅱ instrument technology for in vivo imaging, and summarized its major features. Finally, we provided a prospect that the development of chemical materials, optoelectronic instruments, and multi-modal technologies can promote NIR Ⅱ technology innovation, which is expected to be widely and deeply applied in clinical transformation.
  • 加载中
    1. [1]

      Zanzonico, P. B. Health Phys. 2019, 116, 135.  doi: 10.1097/HP.0000000000001038

    2. [2]

      Grespan, L.; Fiorini, P.; Colucci, G. In The Route to Patient Safety in Robotic Surgery. Springer Tracts in Advanced Robotics, Springer, Cham, Switzerland, 2019, Vol. 126, p. 81.

    3. [3]

      Weissleder, R. Nat. Biotechnol. 2001, 19, 316.  doi: 10.1038/86684

    4. [4]

      Xia, L.; Cheng, Z.; Zhu, H.; Yang, Z. Acta Chim. Sinica 2019, 77, 172(in Chinese).
       

    5. [5]

      Zhang, Y.; Wang, Z. L.; Tao, Y.; Xu, X.; Fang, H.; Wang, S. F. Chin. J. Org. Chem. 2018, 38, 2693(in Chinese).
       

    6. [6]

      Zhang, Y. Y.; Wu, M. H.; Wu, M. J.; Guo, L. P.; Cao, L.; Wu, H. Y.; Zhang, X. N. Acta Chim. Sinica 2018, 76, 709(in Chinese).
       

    7. [7]

      Frangioni, J. Curr. Opin. Chem. Biol. 2003, 7, 626.  doi: 10.1016/j.cbpa.2003.08.007

    8. [8]

      Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Curr. Opin. Biotechnol. 2007, 18, 17.  doi: 10.1016/j.copbio.2007.01.003

    9. [9]

      Hou, J. T.; Li, K.; Qin, C. Q.; Yu, X. Q. Chin. J. Org. Chem. 2018, 38, 612(in Chinese).
       

    10. [10]

      Yang, L. M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047(in Chinese).
       

    11. [11]

      Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Acta Chim. Sinica 2016, 74, 917(in Chinese).
       

    12. [12]

      Pansare, V. J.; Hejazi, S.; Faenza, W. J.; Prud'homme, R. K. Chem. Mater. 2012, 24, 812.  doi: 10.1021/cm2028367

    13. [13]

      Ntziachristos, V. Annu. Rev. Biomed. Eng. 2006, 8, 1.  doi: 10.1146/annurev.bioeng.8.061505.095831

    14. [14]

      Monici, M. Biotechnol. Ann. Rev. 2005, 11, 227.  doi: 10.1016/S1387-2656(05)11007-2

    15. [15]

      Diao, S.; Hong, G.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. Nano Res. 2015, 8, 3027.  doi: 10.1007/s12274-015-0808-9

    16. [16]

      Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. Nat. Nanotechnol. 2009, 4, 773.  doi: 10.1038/nnano.2009.294

    17. [17]

      Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710.  doi: 10.1038/nnano.2009.326

    18. [18]

      Lim, Y. T.; Kim, S.; Nakayama, A.; Stott, N. E.; Bawendi, M. G.; Frangioni, J. V. Mol. Imaging 2003, 2, 50.  doi: 10.1162/153535003765276282

    19. [19]

      Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Nat. Med. 2012, 18, 1841.  doi: 10.1038/nm.2995

    20. [20]

      Dang, X.; Gu, L.; Qi, J.; Correa, S.; Zhang, G.; Belcher, A. M.; Hammond, P. T. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5179.  doi: 10.1073/pnas.1521175113

    21. [21]

      Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. Angew. Chem., Int. Ed. 2012, 124, 9956.  doi: 10.1002/ange.201206059

    22. [22]

      Dong, B.; Li, C.; Chen, G.; Zhang, Y.; Zhang, Y.; Deng, M.; Wang, Q. Chem. Mater. 2013, 25, 2503.  doi: 10.1021/cm400812v

    23. [23]

      Xu, Y.; Zhao, Y.; Zhang, Y. J.; Cui, Z. F.; Wang, L. H.; Fan, C. H.; Gao, J. M.; Sun, Y. H. Acta Chim. Sinica 2018, 76, 393(in Chinese).
       

    24. [24]

      Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Nat. Commun. 2013, 4, 1.

    25. [25]

      Wang, R.; Zhou, L.; Wang, W.; Li, X.; Zhang, F. Nat. Commun. 2017, 8, 1.  doi: 10.1038/s41467-016-0009-6

    26. [26]

      Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese).  doi: 10.11862/CJIC.2019.159
       

    27. [27]

      Hong, G.; Zou, Y.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X.; Chen, C.; Liu, B.; He, Y. Nat. Commun. 2014, 5, 4206.  doi: 10.1038/ncomms5206

    28. [28]

      Wang, S.; Liu, J.; Feng, G.; Ng, L. G.; Liu, B. Adv. Funct. Mater. 2019, 29, 1808365.  doi: 10.1002/adfm.201808365

    29. [29]

      Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.; Diao, S.; Deng, Z.; Hu, X.; Zhang, B.; Zhang, X.; Yaghi, O. K.; Alamparambil, Z. R.; Hong, X.; Cheng, Z.; Dai, H. Nat. Mater. 2016, 15, 235.  doi: 10.1038/nmat4476

    30. [30]

      Yang, Q.; Ma, Z.; Wang, H.; Zhou, B.; Zhu, S.; Zhong, Y.; Wang, J.; Wan, H.; Antaris, A.; Ma, R. Adv. Mater. 2017, 29, 1605497.  doi: 10.1002/adma.201605497

    31. [31]

      Yang, Q.; Hu, Z.; Zhu, S.; Ma, R.; Ma, H.; Ma, Z.; Wan, H.; Zhu, T.; Jiang, Z.; Liu, W. J. Am. Chem. Soc. 2018, 140, 1715.  doi: 10.1021/jacs.7b10334

    32. [32]

      Sun, G. F.; Liu, L. L. CN207123651U, 2018 (in Chinese).

    33. [33]

      Qian, J.; Yu, W. B.; Zhou, J. CN109324026A, 2019 (in Chinese).

    34. [34]

      Qian, J.; Yu, W. B.; Zang, H. Q. CN108414442A, 2018 (in Chinese).

    35. [35]

      Qian, J.; Yu, W. B.; Zang, H. Q. CN108982443A, 2018 (in Chinese).

    36. [36]

      Qian, J.; Yu, W. B. CN108982445A, 2018(in Chinese).

    37. [37]

      Tian, J.; Hu, Z. H.; Cao, C. G.; Zhang, Z. Y.; Cai, M. S. CN109480776A, 2019 (in Chinese).

    38. [38]

      Zhang, Z. H.; Cheng, Y.; Chen, H. CN108833883A, 2018 (in Chinese).

    39. [39]

      Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8943.  doi: 10.1073/pnas.1014501108

    40. [40]

      Wang, W.; Ma, Z.; Zhu, S.; Wan, H.; Yue, J.; Ma, H.; Ma, R.; Yang, Q.; Wang, Z.; Li, Q. Adv. Mater. 2018, 30, 1800106.  doi: 10.1002/adma.201800106

    41. [41]

      Wan, H.; Ma, H.; Zhu, S.; Wang, F.; Tian, Y.; Ma, R.; Yang, Q.; Hu, Z.; Zhu, T.; Wang, W. Adv. Funct. Mater. 2018, 28, 1804956.  doi: 10.1002/adfm.201804956

    42. [42]

      Zhu, S.; Hu, Z.; Tian, R.; Yung, B. C.; Yang, Q.; Zhao, S.; Kiesewetter, D. O.; Niu, G.; Sun, H.; Antaris, A. L. Adv. Mater. 2018, 30, 1802546.  doi: 10.1002/adma.201802546

    43. [43]

      Hong, G.; Diao, S.; Chang, J.; Antaris, A. L.; Chen, C.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. Nat. Photon. 2014, 8, 723.  doi: 10.1038/nphoton.2014.166

    44. [44]

      Hong, G.; Lee, J. C.; Jha, A.; Diao, S.; Nakayama, K. H.; Hou, L.; Doyle, T. C.; Robinson, J. T.; Antaris, A. L.; Dai, H.; Cooke, J. P.; Huang, N. F. Circ. Cardiovasc. Imag. 2014, 7, 517.  doi: 10.1161/CIRCIMAGING.113.000305

    45. [45]

      Diao, S.; Hong, G.; Robinson, J. T.; Jiao, L.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Am. Chem. Soc. 2012, 134, 16971.  doi: 10.1021/ja307966u

    46. [46]

      Zhang, X. D.; Wang, H.; Antaris, A. L.; Li, L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G.; Ma, Z.; Wang, J. Adv. Mater. 2016, 28, 6872.  doi: 10.1002/adma.201600706

    47. [47]

      Tao, Z.; Hong, G.; Shinji, C.; Chen, C.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y.; Dai, H. Angew. Chem., Int. Ed. 2013, 125, 13240.  doi: 10.1002/ange.201307346

    48. [48]

      In Encyclopedia of Microfluidics and Nanofluidics, Ed.: Li, D., Springer, New York, 2015, p. 473.

    49. [49]

      Zhu, S.; Herraiz, S.; Yue, J.; Zhang, M.; Wan, H.; Yang, Q.; Ma, Z.; Wang, Y.; He, J.; Antaris, A. L.; Zhong, Y.; Diao, S.; Feng, Y.; Zhou, Y.; Yu, K.; Hong, G.; Liang, Y.; Hsueh, A. J.; Dai, H. Adv. Mater. 2018, 30, 1705799.  doi: 10.1002/adma.201705799

    50. [50]

      Zhu, S.; Yang, Q.; Antaris, A. L.; Yue, J.; Ma, Z.; Wang, H.; Huang, W.; Wan, H.; Wang, J.; Diao, S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 962.  doi: 10.1073/pnas.1617990114

    51. [51]

      Wan, H.; Yue, J.; Zhu, S.; Uno, T.; Zhang, X.; Yang, Q.; Yu, K.; Hong, G.; Wang, J.; Li, L. Nat. Commun. 2018, 9, 1171.  doi: 10.1038/s41467-018-03505-4

    52. [52]

      Yu, W.; Guo, B.; Zhang, H.; Zhou, J.; Yu, X.; Zhu, L.; Xue, D.; Liu, W.; Sun, X.; Qian, J. Sci. Bull. 2019, 64, 410.  doi: 10.1016/j.scib.2019.02.019

    53. [53]

      Wang, E.; Babbey, C.; Dunn, K. W. J. Microsc. 2005, 218, 148.  doi: 10.1111/j.1365-2818.2005.01473.x

    54. [54]

      Zubkovs, V.; Antonucci, A.; Schuergers, N.; Lambert, B.; Latini, A.; Ceccarelli, R.; Santinelli, A.; Rogov, A.; Ciepielewski, D.; Boghossian, A. A. Sci. Rep. 2018, 8, 1.  doi: 10.1038/s41598-017-17765-5

    55. [55]

      Education in Microscopy and Digital Imaging. http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html

    56. [56]

      Albert, O.; Sherman, L.; Mourou, G.; Norris, T. V.; Vdovin, G. Opt. Lett. 2000, 25, 52.  doi: 10.1364/OL.25.000052

    57. [57]

      Masters, B. R.; So, P. T. Opt. Express. 2001, 8, 2.  doi: 10.1364/OE.8.000002

    58. [58]

      Wang, S.; Liu, J.; Goh, C. C.; Ng, L. G.; Liu, B. Adv. Mater. 2019, 31, 1904447.  doi: 10.1002/adma.201904447

    59. [59]

      Huang, C. B.; Chen, H.; Li, F. Q.; An, S. Y. Chin. J. Org. Chem. 2019, 39, 2467(in Chinese).
       

    60. [60]

      Wang, X. F.; Wei, C.; Li, X. Y.; Zheng, X. Y.; Geng, X. W.; Zhang, P. Z.; Li, X. L. Chin. J. Org. Chem. 2019, 39, 469(in Chinese).
       

    61. [61]

      Xie, Z. D.; Fu, M. L.; Yin, B.; Zhu, Q. Chin. J. Org. Chem. 2018, 38, 1364(in Chinese).
       

    62. [62]

      Qi, J.; Sun, C.; Li, D.; Zhang, H.; Yu, W.; Zebibula, A.; Lam, J. W.; Xi, W.; Zhu, L.; Cai, F.; Wei, P.; Zhu, C.; Lina, L. R.; Prevedel, R. J.; Qian, J.; Tang, B. Z. ACS Nano 2018, 12, 7936.  doi: 10.1021/acsnano.8b02452

    63. [63]

      Voie, A. H.; Burns, D.; Spelman, F. J. Microsc. 1993, 170, 229.  doi: 10.1111/j.1365-2818.1993.tb03346.x

    64. [64]

      Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E. H. Science 2004, 305, 1007.  doi: 10.1126/science.1100035

    65. [65]

      Ten years of Methods. Nat. Methods 2014, 11, 1000.  doi: 10.1038/nmeth1014-1000

    66. [66]

      Huisken, J.; Stainier, D. Y. Development 2009, 136, 1963.  doi: 10.1242/dev.022426

    67. [67]

      Wang, F.; Wan, H.; Ma, Z.; Zhong, Y.; Sun, Q.; Tian, Y.; Qu, L.; Du, H.; Zhang, M.; Li, L.; Ma, H.; Luo, J.; Liang, Y.; Li, W. J.; Hong, G.; Liu, L.; Dai, H. Nat. Methods 2019, 16, 545.  doi: 10.1038/s41592-019-0398-7

    68. [68]

      van Munster, E. B.; Gadella, T. W. J. Fluorescence Lifetime Imaging Microscopy (FLIM), Vol. 95., Ed.: Rietdorf, J., Springer, Heidelberg, Berlin, 2005, p. 143.

    69. [69]

      Gadella Jr., T. W.; Jovin, T. M.; Clegg, R. M. Biophys. Chem. 1993, 48, 221.  doi: 10.1016/0301-4622(93)85012-7

    70. [70]

      Bastiaens, P. I.; Squire, A. Trends Cell Biol. 1999, 9, 48.  doi: 10.1016/S0962-8924(98)01410-X

    71. [71]

      Fan, Y.; Wang, P.; Lu, Y.; Wang, R.; Zhou, L.; Zheng, X.; Li, X.; Piper, J. A.; Zhang, F. Nat. Nanotech. 2018, 13, 941.  doi: 10.1038/s41565-018-0221-0

    72. [72]

      Boni, L.; David, G.; Mangano, A.; Dionigi, G.; Rausei, S.; Spampatti, S.; Cassinotti, E.; Fingerhut, A. Surg. Endosc. 2015, 29, 2046.  doi: 10.1007/s00464-014-3895-x

    73. [73]

      Polom, K.; Murawa, D.; Rho, Y.; Nowaczyk, P.; Hünerbein, M.; Murawa, P. Cancer 2011, 117, 4812.  doi: 10.1002/cncr.26087

    74. [74]

      Zhang, Y.-M.; Shi, R.; Hou, J.-C.; Liu, Z.-R.; Cui, Z.-L.; Li, Y.; Wu, D.; Shi, Y.; Shen, Z.-Y. J. Cancer Res. Clin. Oncol. 2017, 143, 51.  doi: 10.1007/s00432-016-2267-4

    75. [75]

      Sun, Y.; Zeng, X.; Xiao, Y.; Liu, C.; Zhu, H.; Zhou, H.; Chen, Z.; Xu, F.; Wang, J.; Zhu, M. J.; Wu, M.; Tian, Zhang, H.; Deng, Z.; Cheng, Z.; Hong, X. Chem. Sci. 2018, 9, 2092.  doi: 10.1039/C7SC04774F

    76. [76]

      Tian, R.; Ma, H.; Yang, Q.; Wan, H.; Zhu, S.; Chandra, S.; Sun, H.; Kiesewetter, D. O.; Niu, G.; Liang, Y.; Chen, X. Chem. Sci. 2019, 10, 326.  doi: 10.1039/C8SC03751E

    77. [77]

      Kurbegovic, S.; Juhl, K.; Chen, H.; Qu, C.; Ding, B.; Leth, J. M.; Drzewiecki, K. T.; Kjaer, A.; Cheng, Z. Bioconjugate Chem. 2018, 29, 3833.  doi: 10.1021/acs.bioconjchem.8b00669

    78. [78]

      Wang, P.; Fan, Y.; Lu, L.; Liu, L.; Fan, L.; Zhao, M.; Xie, Y.; Xu, C.; Zhang, F. Nat. Commun. 2018, 9, 1.  doi: 10.1038/s41467-017-02088-w

    79. [79]

      Wen, Q.; Zhang, Y.; Li, C.; Ling, S.; Yang, X.; Chen, G.; Yang, Y.; Wang, Q. Angew. Chem., Int. Ed. 2019, 131, 11117.  doi: 10.1002/ange.201905643

    80. [80]

      Carr, J. A.; Franke, D.; Caram, J. R.; Perkinson, C. F.; Saif, M.; Askoxylakis, V.; Datta, M.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 4465.  doi: 10.1073/pnas.1718917115

    81. [81]

      Yu, X.; Feng, Z.; Cai, Z.; Jiang, M.; Xue, D.; Zhu, L.; Zhang, Y.; Liu, J.; Que, B.; Yang, W. J. Mater. Chem. B 2019, 7, 6623.  doi: 10.1039/C9TB01381D

    82. [82]

      Xue, D.; Wu, D.; Lu, Z.; Zebibula, A.; Feng, Z.; Qian, J.; Li, G. bioRxiv 2020.

    83. [83]

      Suo, Y.; Wu, F.; Xu, P.; Shi, H.; Wang, T.; Liu, H.; Cheng, Z. Adv. Healthc. Mater. 2019, 8, 1900974.  doi: 10.1002/adhm.201900974

    84. [84]

      Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C.; Zhou, T.; Zhang, Y.; Chi, C.; He, P.; Xia, X.; Chen, Y.; Gambhir, S. S.; Cheng, Z.; Tian, J. Nat. Biomed. Eng. 2020, 4, 259.  doi: 10.1038/s41551-019-0494-0

    85. [85]

      He, S.; Song, J.; Qu, J.; Cheng, Z. Chem. Soc. Rev. 2018, 47, 4258.  doi: 10.1039/C8CS00234G

    86. [86]

      Filatova, S. A.; Shcherbakov, I. A.; Tsvetkov, V. B. J. Biomed. Opt. 2017, 22, 035009.  doi: 10.1117/1.JBO.22.3.035009

    87. [87]

      Patel, K. D. M.S. Thesis, Rutgers University, New Jersey, 2017.

    88. [88]

      Golovynskyi, S.; Golovynska, I.; Stepanova, L. I.; Datsenko, O. I.; Liu, L.; Qu, J.; Ohulchanskyy, T. Y. J. Biophotonics 2018, 11, e201800141.  doi: 10.1002/jbio.201800141

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    8. [8]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    15. [15]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

Metrics
  • PDF Downloads(391)
  • Abstract views(10432)
  • HTML views(4348)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return