Citation: Wang Wenxuan, Wang Jianqiu, Zheng Zhong, Hou Jianhui. Research Progress of Tandem Organic Solar Cells[J]. Acta Chimica Sinica, ;2020, 78(5): 382-396. doi: 10.6023/A20020032 shu

Research Progress of Tandem Organic Solar Cells

  • Corresponding author: Zheng Zhong, zhengz@iccas.ac.cn Hou Jianhui, hjhzlz@iccas.ac.cn
  • Received Date: 13 February 2020
    Available Online: 26 April 2020

    Fund Project: the National Natural Science Foundation of China (NSFC) 51703041the National Natural Science Foundation of China (NSFC) 91633301the National Natural Science Foundation of China (NSFC) 51673201Project supported by the National Natural Science Foundation of China (NSFC) (Nos. 51703041, 91333204, 91633301, 51673201)the National Natural Science Foundation of China (NSFC) 91333204

Figures(5)

  • Organic solar cells have been developing quite rapidly in the past two decades. Tang fabricated the first organic solar cell with planar heterojunction in 1986, while the power conversion efficiency (PCE) was only 1%. The PCE of single-junction organic solar cell has increased to over 17% in 2019. However, the single-junction solar cells are limited in performance by the severe energy loss. Tandem organic solar cells that use an interconnecting layer connecting two sub-cells provide the possibility of optimizing the devices performance. The two different active layers of sub-cells have non-overlapping light absorption scales, which make the light utilized more adequately. Therefore, the tandem architecture of devices can extend the light absorption within the solar spectrum and effectively reduce energy loss resulting from thermalization loss and transmission loss. According to Shockley and Queisser's calculation, the limitation of the PCE of a tandem solar cell is 42%, which is higher than 33.8% of a single-junction solar cell. In organic photovoltaics field, the developments of the tandem solar cells benefit from the optimization of active layers, interconnecting layers and construction methods. These achievements have resulted in higher PCEs and the devices approaching practical application. At present, the highest PCE of tandem organic solar cell is 17.3% obtained by Chen's group in 2018, but it is still far from the PCE limitation. According to Kirchhoff's law, the open-circuit voltage (VOC) in series tandem cells is theoretically equal to the sum of the VOCs of sub-cells, and the short-circuit current (JSC) in parallel cells is equal to the sum of the JSCs of sub-cells. Hence, the series tandem solar cells still face with the challenge of the unmatched JSCs and the complexed processing methods. Here, this review mainly focuses on the materials used in tandem solar cells, the structure of the interconnecting layers, the processing methods, the measurement methods and the applications. The critical achievements on tandem organic solar cells in recent years and the progress of larger scale, flexible tandem devices are summarized in this review. It also presents the outlooks of the high performance tandem solar cells based on the material and structure requirements.
  • 加载中
    1. [1]

      Upama, M. B.; Mahmud, M. A.; Conibeer, G.; Uddin, A. Solar RRL 2020, 4, 1900342.  doi: 10.1002/solr.201900342

    2. [2]

      Inganäs, O. Adv. Mater. 2018, 30, 1800388.  doi: 10.1002/adma.201800388

    3. [3]

      Zhang, X.; Tang, Y.; Yang, K.; Chen, P.; Guo, X. ChemElectroChem 2019, 6, 5547.  doi: 10.1002/celc.201901422

    4. [4]

      Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.  doi: 10.1063/1.96937

    5. [5]

      Di Carlo Rasi, D.; Janssen, R. A. J. Adv. Mater. 2019, 31, e1806499.  doi: 10.1002/adma.201806499

    6. [6]

      Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C. J. Energy Environ. Sci. 2009, 2, 347.  doi: 10.1039/b817952b

    7. [7]

      Vos, A. D. J. Phys. D:Appl. Phys. 1980, 13, 839.  doi: 10.1088/0022-3727/13/5/018

    8. [8]

      Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510.  doi: 10.1063/1.1736034

    9. [9]

      Sista, S.; Hong, Z.; Chen, L.-M.; Yang, Y. Energy Environ. Sci. 2011, 4, 1606.  doi: 10.1039/c0ee00754d

    10. [10]

      Yip, H.-L.; Jen, A. K. Y. Energy Environ. Sci. 2012, 5, 5994.  doi: 10.1039/c2ee02806a

    11. [11]

      Yuan, Y.; Huang, J.; Li, G. Green 2011, 1, 65.

    12. [12]

      Hadipour, A.; Boer, B. d.; Wildeman, J.; Kooistra, F. B.; Hummelen, J. C.; Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J.; Blom, P. W. M. Adv. Funct. Mater. 2006, 16, 1897.  doi: 10.1002/adfm.200600138

    13. [13]

      Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222.  doi: 10.1126/science.1141711

    14. [14]

      Meng, L.; Ding, L.; Xia, R.; Cao, Y.; Chen, Y.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Yip, H.-L. Science 2018, 361, 1094.  doi: 10.1126/science.aat2612

    15. [15]

      Lu, S.; Lin, H.; Zhang, S.; Hou, J.; Choy, W. C. H. Adv. Energy Mater. 2017, 7, 1701164.  doi: 10.1002/aenm.201701164

    16. [16]

      Huang, F.; Wu, H.; Wang, D.; Yang, W.; Cao, Y. Chem. Mater. 2004, 16, 708.  doi: 10.1021/cm034650o

    17. [17]

      Chen, F. X.; Xu, J. Q.; Liu, Z. X.; Chen, M.; Xia, R.; Yang, Y.; Lau, T. K.; Zhang, Y.; Lu, X.; Yip, H. L.; Jen, A. K.; Chen, H.; Li, C. Z. Adv. Mater. 2018, 30, e1803769.  doi: 10.1002/adma.201803769

    18. [18]

      Mai, C. K.; Zhou, H.; Zhang, Y.; Henson, Z. B.; Nguyen, T. Q.; Heeger, A. J.; Bazan, G. C. Angew. Chem., Int. Ed. 2013, 52, 12874.  doi: 10.1002/anie.201307667

    19. [19]

      Zhou, H.; Zhang, Y.; Mai, C. K.; Collins, S. D.; Bazan, G. C.; Nguyen, T. Q.; Heeger, A. J. Adv. Mater. 2015, 27, 1767.  doi: 10.1002/adma.201404220

    20. [20]

      Cui, Y.; Yao, H.; Gao, B.; Qin, Y.; Zhang, S.; Yang, B.; He, C.; Xu, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7302.  doi: 10.1021/jacs.7b01493

    21. [21]

      Mohd Yusoff, A. R. b.; Lee, S. J.; Kim, H. P.; Shneider, F. K.; da Silva, W. J.; Jang, J. Adv. Funct. Mater. 2014, 24, 2240.  doi: 10.1002/adfm.201303471

    22. [22]

      Kim, J.-H.; Shin, S. A.; Park, J. B.; Song, C. E.; Shin, W. S.; Yang, H.; Li, Y.; Hwang, D.-H. Macromolecules 2014, 47, 1613.  doi: 10.1021/ma4026493

    23. [23]

      Qin, Y.; Chen, Y.; Cui, Y.; Zhang, S.; Yao, H.; Huang, J.; Li, W.; Zheng, Z.; Hou, J. Adv. Mater. 2017, 29, 1606340.  doi: 10.1002/adma.201606340

    24. [24]

      Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q. Energy Environ. Sci. 2010, 3, 867.  doi: 10.1039/b926255p

    25. [25]

      Song, S.; Kranthiraja, K.; Heo, J.; Kim, T.; Walker, B.; Jin, S.-H.; Kim, J. Y. Adv. Energy Mater. 2017, 7, 1700782.  doi: 10.1002/aenm.201700782

    26. [26]

      Zhang, Y.; Kan, B.; Sun, Y.; Wang, Y.; Xia, R.; Ke, X.; Yi, Y. Q.; Li, C.; Yip, H. L.; Wan, X.; Cao, Y.; Chen, Y. Adv. Mater. 2018, 30, e1707508.  doi: 10.1002/adma.201707508

    27. [27]

      Mohd Yusoff, A. R. b.; Kim, D.; Schneider, F. K.; da Silva, W. J.; Jang, J. Energy Environ. Sci. 2015, 8, 1523.  doi: 10.1039/C5EE00749F

    28. [28]

      You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.  doi: 10.1038/ncomms2411

    29. [29]

      Hofle, S.; Schienle, A.; Bernhard, C.; Bruns, M.; Lemmer, U.; Colsmann, A. Adv. Mater. 2014, 26, 5155.  doi: 10.1002/adma.201400332

    30. [30]

      Qiu, M.; Zhu, D.; Bao, X.; Wang, J.; Wang, X.; Yang, R. J. Mater. Chem. A 2016, 4, 894.  doi: 10.1039/C5TA08898D

    31. [31]

      Li, X.; Zhang, W.; Wu, Y.; Min, C.; Fang, J. ACS Appl. Mater. Interfaces 2013, 5, 8823.  doi: 10.1021/am402105d

    32. [32]

      Guo, X.; Xie, H. J.; Zheng, J. W.; Xu, H.; Wang, Q. K.; Li, Y. Q.; Lee, S. T.; Tang, J. X. Nanoscale 2015, 7, 867.  doi: 10.1039/C4NR04933K

    33. [33]

      Tan, Z. a.; Li, L.; Wang, F.; Xu, Q.; Li, S.; Sun, G.; Tu, X.; Hou, X.; Hou, J.; Li, Y. Adv. Energy Mater. 2014, 4, 1300884.  doi: 10.1002/aenm.201300884

    34. [34]

      Park, S. H.; Shin, I.; Kim, K. H.; Street, R.; Roy, A.; Heeger, A. J. Adv. Mater. 2015, 27, 298.  doi: 10.1002/adma.201403849

    35. [35]

      Zhao, W.; Ye, L.; Zhang, S.; Fan, B.; Sun, M.; Hou, J. Sci. Rep. 2014, 4, 6570.
       

    36. [36]

      da Silva, W. J.; Schneider, F. K.; Yusoff, A. R.; Jang, J. Sci. Rep. 2015, 5, 18090.  doi: 10.1038/srep18090

    37. [37]

      Liu, J.; Xue, Y.; Gao, Y.; Yu, D.; Durstock, M.; Dai, L. Adv. Mater. 2012, 24, 2228.  doi: 10.1002/adma.201104945

    38. [38]

      Chen, Y.; Lin, W. C.; Liu, J.; Dai, L. Nano Lett. 2014, 14, 1467.  doi: 10.1021/nl4046284

    39. [39]

      Liu, J.; Kim, G. H.; Xue, Y.; Kim, J. Y.; Baek, J. B.; Durstock, M.; Dai, L. Adv. Mater. 2014, 26, 786.  doi: 10.1002/adma.201302987

    40. [40]

      Vasilopoulou, M.; Polydorou, E.; Douvas, A. M.; Palilis, L. C.; Kennou, S.; Argitis, P. Energy Environ. Sci. 2015, 8, 2448.  doi: 10.1039/C5EE01116G

    41. [41]

      Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H.-L.; Peng, X.; Cao, Y.; Chen, Y. Nature Photonics 2016, 11, 85.

    42. [42]

      Xu, B.; Zheng, Z.; Zhao, K.; Hou, J. Adv. Mater. 2016, 28, 434.  doi: 10.1002/adma.201502989

    43. [43]

      Cui, Y.; Xu, B.; Yang, B.; Yao, H.; Li, S.; Hou, J. Macromolecules 2016, 49, 8126.  doi: 10.1021/acs.macromol.6b01595

    44. [44]

      Lu, S.; Guan, X.; Li, X.; Sha, W. E. I.; Xie, F.; Liu, H.; Wang, J.; Huang, F.; Choy, W. C. H. Adv. Energy Mater. 2015, 5, 1500631.  doi: 10.1002/aenm.201500631

    45. [45]

      Beliatis, M. J.; Gandhi, K. K.; Rozanski, L. J.; Rhodes, R.; McCafferty, L.; Alenezi, M. R.; Alshammari, A. S.; Mills, C. A.; Jayawardena, K. D.; Henley, S. J.; Silva, S. R. Adv. Mater. 2014, 26, 2078.  doi: 10.1002/adma.201304780

    46. [46]

      Kim, H. P.; Yusoff, A. R. b. M.; Kim, H. M.; Lee, H. J.; Seo, G. J.; Jang, J. Nanoscale Res. Lett. 2014, 9, 150.  doi: 10.1186/1556-276X-9-150

    47. [47]

      Tan, Z.; Li, S.; Wang, F.; Qian, D.; Lin, J.; Hou, J.; Li, Y. Sci. Rep. 2014, 4, 4691.

    48. [48]

      Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. Nat. Energy 2018, 3, 422.  doi: 10.1038/s41560-018-0134-z

    49. [49]

      Zuo, L.; Chang, C.-Y.; Chueh, C.-C.; Zhang, S.; Li, H.; Jen, A. K. Y.; Chen, H. Energy Environ. Sci. 2015, 8, 1712.  doi: 10.1039/C5EE00633C

    50. [50]

      Wang, Z.; Li, Z.; Xu, X.; Li, Y.; Li, K.; Peng, Q. Adv. Funct. Mater. 2016, 26, 4643.  doi: 10.1002/adfm.201504734

    51. [51]

      Zhang, Z.-G.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Energy Environ. Sci. 2014, 7, 1966.  doi: 10.1039/c4ee00022f

    52. [52]

      Maennig, B.; Drechsel, J.; Gebeyehu, D.; Simon, P.; Kozlowski, F.; Werner, A.; Li, F.; Grundmann, S.; Sonntag, S.; Koch, M.; Leo, K.; Pfeiffer, M.; Hoppe, H.; Meissner, D.; Sariciftci, N. S.; Riedel, I.; Dyakonov, V.; Parisi, J. Appl. Phys. A 2004, 79, 1.

    53. [53]

      Martínez-Otero, A.; Liu, Q.; Mantilla-Perez, P.; Bajo, M. M.; Martorell, J. J. Mater. Chem. A 2015, 3, 10681.  doi: 10.1039/C5TA02205C

    54. [54]

      Adams, J.; Spyropoulos, G. D.; Salvador, M.; Li, N.; Strohm, S.; Lucera, L.; Langner, S.; Machui, F.; Zhang, H.; Ameri, T.; Voigt, M. M.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2015, 8, 169.  doi: 10.1039/C4EE02582B

    55. [55]

      Chang, S.-Y.; Lin, Y.-C.; Sun, P.; Hsieh, Y.-T.; Meng, L.; Bae, S.-H.; Su, Y.-W.; Huang, W.; Zhu, C.; Li, G.; Wei, K.-H.; Yang, Y. Solar RRL 2017, 1, 1700139.  doi: 10.1002/solr.201700139

    56. [56]

      Kang, R.; Park, S.; Jung, Y. K.; Lim, D. C.; Cha, M. J.; Seo, J. H.; Cho, S. Adv. Energy Mater. 2018, 8, 1702165.  doi: 10.1002/aenm.201702165

    57. [57]

      Gilot, J.; Wienk, M. M.; Janssen, R. A. J. Appl. Phys. Lett. 2007, 90, 143512.  doi: 10.1063/1.2719668

    58. [58]

      Gao, Y.; Le Corre, V. M.; Gaitis, A.; Neophytou, M.; Hamid, M. A.; Takanabe, K.; Beaujuge, P. M. Adv. Mater. 2016, 28, 3366.  doi: 10.1002/adma.201504633

    59. [59]

      Sista, S.; Park, M. H.; Hong, Z.; Wu, Y.; Hou, J.; Kwan, W. L.; Li, G.; Yang, Y. Adv. Mater. 2010, 22, 380.  doi: 10.1002/adma.200901624

    60. [60]

      Sakai, J.; Kawano, K.; Yamanari, T.; Taima, T.; Yoshida, Y.; Fujii, A.; Ozaki, M. Sol. Energy Meter. Sol. Cells 2010, 94, 376.  doi: 10.1016/j.solmat.2009.08.008

    61. [61]

      Tan, H.; Furlan, A.; Li, W.; Arapov, K.; Santbergen, R.; Wienk, M. M.; Zeman, M.; Smets, A. H.; Janssen, R. A. Adv. Mater. 2016, 28, 2170.  doi: 10.1002/adma.201504483

    62. [62]

      Liu, Y.; Chen, C. C.; Hong, Z.; Gao, J.; Yang, Y. M.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Sci. Rep. 2013, 3, 3356.  doi: 10.1038/srep03356

    63. [63]

      Zuo, L.; Chang, C.-Y.; Chueh, C.-C.; Xu, Y.; Chen, H.; Jen, A. K.-Y. J. Mater. Chem. A 2016, 4, 961.  doi: 10.1039/C5TA09247G

    64. [64]

      Shim, H.-S.; Lin, F.; Kim, J.; Sim, B.; Kim, T.-M.; Moon, C.-K.; Wang, C.-K.; Seo, Y.; Wong, K.-T.; Kim, J.-J. Adv. Energy Mater. 2015, 5, 1500228.  doi: 10.1002/aenm.201500228

    65. [65]

      Liu, G.; Jia, J.; Zhang, K.; Jia, X. e.; Yin, Q.; Zhong, W.; Li, L.; Huang, F.; Cao, Y. Adv. Energy Mater. 2019, 9, 1803657.  doi: 10.1002/aenm.201803657

    66. [66]

      Zhang, K.; Xia, R.; Fan, B.; Liu, X.; Wang, Z.; Dong, S.; Yip, H. L.; Ying, L.; Huang, F.; Cao, Y. Adv. Mater. 2018, e1803166.

    67. [67]

      Hadipour, A.; Boer, B. d.; Blom, P. W. M. J. Appl. Phys. 2007, 102, 074506.  doi: 10.1063/1.2786024

    68. [68]

      Kim, T.; Firdaus, Y.; Kirmani, A. R.; Liang, R.-Z.; Hu, H.; Liu, M.; Labban, A. E.; Hoogland, S.; Beaujuge, P. M.; Sargent, E. H.; Amassian, A. ACS Energy Lett. 2018, 3, 1307.  doi: 10.1021/acsenergylett.8b00460

    69. [69]

      Zuo, L.; Shi, X.; Jo, S. B.; Liu, Y.; Lin, F.; Jen, A. K. Adv. Mater. 2018, 30, e1706816.  doi: 10.1002/adma.201706816

    70. [70]

      Zheng, Z.; Zhang, S.; Zhang, M.; Zhao, K.; Ye, L.; Chen, Y.; Yang, B.; Hou, J. Adv. Mater. 2015, 27, 1189.  doi: 10.1002/adma.201404525

    71. [71]

      Chang, C.-Y.; Zuo, L.; Yip, H.-L.; Li, C.-Z.; Li, Y.; Hsu, C.-S.; Cheng, Y.-J.; Chen, H.; Jen, A. K. Y. Adv. Energy Mater. 2014, 4, 1301645.  doi: 10.1002/aenm.201301645

    72. [72]

      Yuan, J.; Gu, J.; Shi, G.; Sun, J.; Wang, H. Q.; Ma, W. Sci. Rep. 2016, 6, 26459.  doi: 10.1038/srep26459

    73. [73]

      Xu, X.; Yu, T.; Bi, Z.; Ma, W.; Li, Y.; Peng, Q. Adv. Mater. 2018, 30, 1703973.  doi: 10.1002/adma.201703973

    74. [74]

      Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.  doi: 10.1002/adma.200501717

    75. [75]

      Dennler, G.; Scharber, M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C. J. Adv. Mater. 2008, 20, 579.  doi: 10.1002/adma.200702337

    76. [76]

      Zhao, C.; Wang, Z.; Zhou, K.; Ge, H.; Zhang, Q.; Jin, L.; Wang, W.; Yin, S. Acta Chimica Sinica 2016, 74, 251(in Chinese).  doi: 10.3969/j.issn.0253-2409.2016.02.017
       

    77. [77]

      Fu, H.; Wang, Z.; Sun, Y. Angew. Chem., Int. Ed. 2019, 58, 4442.  doi: 10.1002/anie.201806291

    78. [78]

      Meng, L.; Yi, Y. Q.; Wan, X.; Zhang, Y.; Ke, X.; Kan, B.; Wang, Y.; Xia, R.; Yip, H. L.; Li, C.; Chen, Y. Adv. Mater. 2019, 31, e1804723.  doi: 10.1002/adma.201804723

    79. [79]

      Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17, 119.  doi: 10.1038/nmat5063

    80. [80]

      Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Nature Photonics 2018, 12, 131.  doi: 10.1038/s41566-018-0104-9

    81. [81]

      Shao, R.; Yang, X.; Yin, S.; Wang, W. Acta Chimica Sinica 2016, 74, 676(in Chinese).
       

    82. [82]

      Liu, W.; Li, S.; Huang, J.; Yang, S.; Chen, J.; Zuo, L.; Shi, M.; Zhan, X.; Li, C. Z.; Chen, H. Adv. Mater. 2016, 28, 9729.  doi: 10.1002/adma.201603518

    83. [83]

      Chen, S.; Yao, H.; Hu, B.; Zhang, G.; Arunagiri, L.; Ma, L.-K.; Huang, J.; Zhang, J.; Zhu, Z.; Bai, F.; Ma, W.; Yan, H. Adv. Energy Mater. 2018, 8, 1800529.  doi: 10.1002/aenm.201800529

    84. [84]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170.  doi: 10.1002/adma.201404317

    85. [85]

      Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. Angew. Chem., Int. Ed. 2019, 58, 4129.  doi: 10.1002/anie.201808976

    86. [86]

      Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.  doi: 10.1038/nature07727

    87. [87]

      Cheng, P.; Liu, Y.; Chang, S.-Y.; Li, T.; Sun, P.; Wang, R.; Cheng, H.-W.; Huang, T.; Meng, L.; Nuryyeva, S.; Zhu, C.; Wei, K.-H.; Sun, B.; Zhan, X.; Yang, Y. Joule 2019, 3, 432.  doi: 10.1016/j.joule.2018.11.011

    88. [88]

      Yue, Q.; Zhou, Z.; Xu, S.; Zhang, J.; Zhu, X. J. Mater. Chem. A 2018, 6, 13588.  doi: 10.1039/C8TA04405H

    89. [89]

      Kim, J.-H.; Park, J. B.; Xu, F.; Kim, D.; Kwak, J.; Grimsdale, A. C.; Hwang, D.-H. Energy Environ. Sci. 2014, 7, 4118.  doi: 10.1039/C4EE02318H

    90. [90]

      Li, K.; Li, Z.; Feng, K.; Xu, X.; Wang, L.; Peng, Q. J. Am. Chem. Soc. 2013, 135, 13549.  doi: 10.1021/ja406220a

    91. [91]

      Glaser, K.; Beu, P.; Bahro, D.; Sprau, C.; Pütz, A.; Colsmann, A. J. Mater. Chem. A 2018, 6, 9257.  doi: 10.1039/C8TA00590G

    92. [92]

      Zuo, L.; Yu, J.; Shi, X.; Lin, F.; Tang, W.; Jen, A. K. Adv. Mater. 2017, 29, 1702547.  doi: 10.1002/adma.201702547

    93. [93]

      Li, W.; Furlan, A.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 2013, 135, 5529.  doi: 10.1021/ja401434x

    94. [94]

      Qin, Y.; Uddin, M. A.; Chen, Y.; Jang, B.; Zhao, K.; Zheng, Z.; Yu, R.; Shin, T. J.; Woo, H. Y.; Hou, J. Adv. Mater. 2016, 28, 9416.  doi: 10.1002/adma.201601803

    95. [95]

      Duan, C.; Furlan, A.; van Franeker, J. J.; Willems, R. E. M.; Wienk, M. M.; Janssen, R. A. J. Adv. Mater. 2015, 27, 4461.  doi: 10.1002/adma.201501626

    96. [96]

      Hagemann, O.; Bjerring, M.; Nielsen, N. C.; Krebs, F. C. Sol. Energy Meter. Sol. Cells 2008, 92, 1327.  doi: 10.1016/j.solmat.2008.05.005

    97. [97]

      Tang, Z.; George, Z.; Ma, Z.; Bergqvist, J.; Tvingstedt, K.; Vandewal, K.; Wang, E.; Andersson, L. M.; Andersson, M. R.; Zhang, F.; Inganäs, O. Adv. Energy Mater. 2012, 2, 1467.  doi: 10.1002/aenm.201200204

    98. [98]

      Li, N.; Baran, D.; Forberich, K.; Machui, F.; Ameri, T.; Turbiez, M.; Carrasco-Orozco, M.; Drees, M.; Facchetti, A.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2013, 6, 3407.  doi: 10.1039/c3ee42307g

    99. [99]

      Dou, L.; Gao, J.; Richard, E.; You, J.; Chen, C. C.; Cha, K. C.; He, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2012, 134, 10071.  doi: 10.1021/ja301460s

    100. [100]

      Zuo, L.; Shi, X.; Fu, W.; Jen, A. K. Adv. Mater. 2019, 31, e1901683.  doi: 10.1002/adma.201901683

    101. [101]

      Liu, F.; Zhou, Z.; Zhang, C.; Zhang, J.; Hu, Q.; Vergote, T.; Liu, F.; Russell, T. P.; Zhu, X. Adv. Mater. 2017, 29, 1606574.  doi: 10.1002/adma.201606574

    102. [102]

      Li, Y.; Lin, J. D.; Liu, X.; Qu, Y.; Wu, F. P.; Liu, F.; Jiang, Z. Q.; Forrest, S. R. Adv. Mater. 2018, 30, e1804416.  doi: 10.1002/adma.201804416

    103. [103]

      Zuo, L.; Chueh, C. C.; Xu, Y. X.; Chen, K. S.; Zang, Y.; Li, C. Z.; Chen, H.; Jen, A. K. Adv. Mater. 2014, 26, 6778.  doi: 10.1002/adma.201402782

    104. [104]

      Dou, L.; Chen, C.-C.; Yoshimura, K.; Ohya, K.; Chang, W.-H.; Gao, J.; Liu, Y.; Richard, E.; Yang, Y. Macromolecules 2013, 46, 3384.  doi: 10.1021/ma400452j

    105. [105]

      Zheng, Z.; Zhang, S.; Zhang, J.; Qin, Y.; Li, W.; Yu, R.; Wei, Z.; Hou, J. Adv. Mater. 2016, 28, 5133.  doi: 10.1002/adma.201600373

    106. [106]

      Peng, Q.; Huang, Q.; Hou, X.; Chang, P.; Xu, J.; Deng, S. Chem. Commun. 2012, 48, 11452.  doi: 10.1039/c2cc36324k

    107. [107]

      Yuan, J.; Ford, M. J.; Xu, Y.; Zhang, Y.; Bazan, G. C.; Ma, W. Adv. Energy Mater. 2018, 8, 1703291.  doi: 10.1002/aenm.201703291

    108. [108]

      Chen, C. C.; Chang, W. H.; Yoshimura, K.; Ohya, K.; You, J.; Gao, J.; Hong, Z.; Yang, Y. Adv. Mater. 2014, 26, 5670.  doi: 10.1002/adma.201402072

    109. [109]

      Yusoff, A. R. b. M.; Kim, D.; Kim, H. P.; Shneider, F. K.; da Silva, W. J.; Jang, J. Energy Environ. Sci. 2015, 8, 303.  doi: 10.1039/C4EE03048F

    110. [110]

      Di Carlo Rasi, D.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Adv. Mater. 2018, e1803836.

    111. [111]

      Machui, F.; Hösel, M.; Li, N.; Spyropoulos, G. D.; Ameri, T.; Søndergaard, R. R.; Jørgensen, M.; Scheel, A.; Gaiser, D.; Kreul, K.; Lenssen, D.; Legros, M.; Lemaitre, N.; Vilkman, M.; Välimäki, M.; Nordman, S.; Brabec, C. J.; Krebs, F. C. Energy Environ. Sci. 2014, 7, 2792.  doi: 10.1039/C4EE01222D

    112. [112]

      Gu, X.; Shaw, L.; Gu, K.; Toney, M. F.; Bao, Z. Nat. Commun. 2018, 9, 534.  doi: 10.1038/s41467-018-02833-9

    113. [113]

      Li, N.; Brabec, C. J. Energy Environ. Sci. 2015, 8, 2902.  doi: 10.1039/C5EE02145F

    114. [114]

      Guo, F.; Li, N.; Radmilović, V. V.; Radmilović, V. R.; Turbiez, M.; Spiecker, E.; Forberich, K.; Brabec, C. J. Energy Environ. Sci. 2015, 8, 1690.  doi: 10.1039/C5EE00184F

    115. [115]

      Andersen, T. R.; Dam, H. F.; Hösel, M.; Helgesen, M.; Carlé, J. E.; Larsen-Olsen, T. T.; Gevorgyan, S. A.; Andreasen, J. W.; Adams, J.; Li, N.; Machui, F.; Spyropoulos, G. D.; Ameri, T.; Lemaître, N. e.; Legros, M.; Scheel, A.; Gaiser, D.; Kreul, K.; Berny, S.; Lozman, O. R.; Nordman, S.; Välimäki, M.; Vilkman, M.; Søndergaard, R. R.; Jørgensen, M.; Brabec, C. J.; Krebs, F. C. Energy Environ. Sci. 2014, 7, 2925.  doi: 10.1039/C4EE01223B

    116. [116]

      Dam, H. F.; Andersen, T. R.; Pedersen, E. B. L.; Thydén, K. T. S.; Helgesen, M.; Carlé, J. E.; Jørgensen, P. S.; Reinhardt, J.; Søndergaard, R. R.; Jørgensen, M.; Bundgaard, E.; Krebs, F. C.; Andreasen, J. W. Adv. Energy Mater. 2015, 5, 1400736.  doi: 10.1002/aenm.201400736

    117. [117]

      Di Carlo Rasi, D.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Adv. Energy Mater. 2017, 7, 1701664.  doi: 10.1002/aenm.201701664

    118. [118]

      Gilot, J.; Wienk, M. M.; Janssen, R. A. J. Adv. Funct. Mater. 2010, 20, 3904.  doi: 10.1002/adfm.201001167

    119. [119]

      Alemu, D.; Wei, H.-Y.; Ho, K.-C.; Chu, C.-W. Energy Environ. Sci. 2012, 5, 9662.  doi: 10.1039/c2ee22595f

    120. [120]

      Na, S.-I.; Kim, S.-S.; Jo, J.; Kim, D.-Y. Adv. Mater. 2008, 20, 4061.  doi: 10.1002/adma.200800338

    121. [121]

      Spyropoulos, G. D.; Kubis, P.; Li, N.; Baran, D.; Lucera, L.; Salvador, M.; Ameri, T.; Voigt, M. M.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2014, 7, 3284.  doi: 10.1039/C4EE02003K

    122. [122]

      Du, X.; Zeng, Q.; Zhang, H.; Yang, B. Chin. J. Chem. 2017, 35, 551.  doi: 10.1002/cjoc.201600733

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(118)
  • Abstract views(4271)
  • HTML views(1366)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return