Citation: Liao Gang, Wu Yong-Jie, Shi Bing-Feng. Noncovalent Interaction in Transition Metal-Catalyzed Selective C-H Activation[J]. Acta Chimica Sinica, ;2020, 78(4): 289-298. doi: 10.6023/A20020027 shu

Noncovalent Interaction in Transition Metal-Catalyzed Selective C-H Activation

  • Corresponding author: Shi Bing-Feng, bfshi@zju.edu.cn
  • Received Date: 8 February 2020
    Available Online: 12 March 2020

    Fund Project: the National Natural Science Foundation of China 21772170the Natural Science Foundation of Zhejiang Province LR17B020001Project supported by the National Natural Science Foundation of China (Nos. 21901228, 21772170), the China Postdoctoral Science Foundation (No. 2019M650135), the Outstanding Young Talents of Zhejiang Province High-level Personnel of Special Support (No. ZJWR0108) and the Natural Science Foundation of Zhejiang Province (No. LR17B020001)the National Natural Science Foundation of China 21901228the China Postdoctoral Science Foundation 2019M650135the Outstanding Young Talents of Zhejiang Province High-level Personnel of Special Support ZJWR0108

Figures(15)

  • Transition metal-catalyzed direct C-H functionalization is one of the most efficient and powerful tools for the rapid synthesis of organic molecules. The use of functional groups in the molecules or covalently attached coordinating groups as directing groups has been realized as a major strategy to control the selectivity. Noncovalent interactions are of great importance in the field of molecular biology, supramolecular chemistry, material science and drug discovery. More recently, the use of well-designed ligands to enable the site-selective C-H functionalization via noncovalent interactions has emerged as a highly promising yet relatively less explored strategy. In this perspective, recent advances in this cutting-edge area are summarized. The perspective was classified into four sections according to the type of noncovalent interactions, including hydrogen bonding, ion pair, Lewis acid-base interaction and electrostatic interaction. Emphasis is placed on the mode of noncovalent interactions among the transition metals, ligands and substrates. The limitation of current research and the prospect of future work will also be discussed. We anticipate that this strategy might become a promising complementary strategy to control the positional selectivity in C-H functionalization reactions.
  • 加载中
    1. [1]

    2. [2]

      (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. (b) Sambiagio, C.; Schö nbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig G.; Schaaf, P.; Wiesinger, T.; Farooq Zia, M.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603. (c) Zhang, Q.; Shi, B.-F. Chin. J. Chem. 2019, 37, 647. (d) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120, 1788.

    3. [3]

      Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.  doi: 10.1126/science.aad7893

    4. [4]

    5. [5]

      Davis, H. J.; Phipps, R. J. Chem. Sci. 2017, 8, 864.  doi: 10.1039/C6SC04157D

    6. [6]

      (a) For selected reviews on noncovalent interactions, see: Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Nature 2017, 543, 637. (b) Müller-Dethlefs, K.; Hobza, P. Chem Rev. 2000, 100, 143. (c) Breugst, M.; von der Heiden, D.; Schmauck, J. Synthesis 2017, 49, 3224. (d) Hobza P, Müller-Dethlefs K. Non-Covalent Interactions, The Royal Society of Chemistry, Cambridge, 2009. (e) Scheiner, S. Noncovalent Forces, Heidelberg, Springer, 2015; (f) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (g) Doyle, A. G.; Jacobsen, E. N. Chem Rev. 2007, 107, 5713;

    7. [7]

    8. [8]

      Roosen, P. C.; Kallepalli, V. A.; Chattopadhyay, B.; Singleton, D. A.; Maleczka, R. E.; Smith, M. R. J. Am. Chem. Soc. 2012, 134, 11350.  doi: 10.1021/ja303443m

    9. [9]

      Preshlock, S. M.; Plattner, D. L.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M. R. Angew. Chem., Int. Ed. 2013, 52, 12915.  doi: 10.1002/anie.201306511

    10. [10]

      Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. Nat. Chem. 2015, 7, 712.  doi: 10.1038/nchem.2322

    11. [11]

      Wang, J.; Torigoe, T.; Kuninobu, Y. Org. Lett. 2019, 21, 1342.  doi: 10.1021/acs.orglett.9b00030

    12. [12]

      Lu, X.; Yoshigoe, Y.; Ida, H.; Nishi, M.; Kanai, M.; Kuninobu, Y. ACS Catal. 2019, 9, 1705.  doi: 10.1021/acscatal.8b05005

    13. [13]

      Unnikrishnan, A.; Sunoj, R. B. Chem. Sci. 2019, 10, 3826.  doi: 10.1039/C8SC05335A

    14. [14]

      Davis, H. J.; Genov, G. R.; Phipps, R. J. Angew. Chem., Int. Ed. 2017, 56, 13351.  doi: 10.1002/anie.201708967

    15. [15]

      Davis, H. J.; Mihai, M. T.; Phipps, R. J. J. Am. Chem. Soc. 2016, 138, 12759.  doi: 10.1021/jacs.6b08164

    16. [16]

      Bai, S.-T.; Bheeter, C. B.; Reek, J. N. H. Angew. Chem., Int. Ed. 2019, 58, 13039.  doi: 10.1002/anie.201907366

    17. [17]

      Mihai, M. T.; Davis, H. J.; Genov, G. R.; Phipps, R. J. ACS Catal. 2018, 8, 3764.  doi: 10.1021/acscatal.8b00423

    18. [18]

      Lee, B.; Mihai, M. T.; Stojalnikova, V.; Phipps, R. J. J. Org. Chem. 2019, 84, 13124.  doi: 10.1021/acs.joc.9b00878

    19. [19]

      (a) Mihai, M.; Williams, B. D.; Phipps, R. J. J. Am. Chem. Soc. 2019, 141, 15477. (b) Montero Bastidas, J. R.; Oleskey, T. J.; Miller, S. L.; Smith, M. R.; Maleczka, R. E. J. Am. Chem. Soc. 2019, 141, 15483.

    20. [20]

      Bisht, R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138, 84.  doi: 10.1021/jacs.5b11683

    21. [21]

      Li, H. L.; Kuninobu, Y.; Kanai, M. Angew. Chem., Int. Ed. 2017, 56, 1495.  doi: 10.1002/anie.201610041

    22. [22]

      Yang, L.; Semba, K.; Nakao, Y. Angew. Chem., Int. Ed. 2017, 56, 4853.  doi: 10.1002/anie.201701238

    23. [23]

      Yang, L.; Uemura, N.; Nakao, Y. J. Am. Chem. Soc. 2019, 141, 7972.  doi: 10.1021/jacs.9b03138

    24. [24]

      Hoque, M. E.; Bisht, R.; Haldar, C.; Chattopadhyay, B. J. Am. Chem. Soc. 2017, 139, 7745.  doi: 10.1021/jacs.7b04490

    25. [25]

      Bisht, R.; Hoque, M. E.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2018, 57, 15762.  doi: 10.1002/anie.201809929

    26. [26]

      Chattopadhyay, B.; Dannatt, J. E.; Andujar-De Sanctis, I. L.; Gore, K. A.; Maleczka, R. E.; Singleton, D. A.; Smith, M. R. J. Am. Chem. Soc. 2017, 139, 7864.  doi: 10.1021/jacs.7b02232

    27. [27]

      Zhang, Z.; Tanaka, K.; Yu, J.-Q. Nature 2017, 543, 538.  doi: 10.1038/nature21418

    28. [28]

      (a) Achar, T. K.; Ramakrishna, K.; Porey, S.; Pal, T.; Dolui, P.; Biswas, J. P.; Maiti, D. Chem.-Eur. J. 2018, 24, 17906. (b) Ramakrishna, K.; Biswas, J. P.; Jana, S.; Achar, T. K.; Porey, S.; Maiti, D. Angew. Chem., Int. Ed. 2019, 58, 13808.

    29. [29]

      Haldar, C.; Hoque, M. E.; Bisht, R.; Chattopadhyay, B. Tetrahedron Lett. 2018, 59, 1269.  doi: 10.1016/j.tetlet.2018.01.098

    30. [30]

      (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (b) Wencel-Delord, J.; Colobert, F. Chem.-Eur. J. 2013, 19, 14010. (c) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173. (d) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351. (e) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908. (f) Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093. (g) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, 759. (h) Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Chem. Commun. 2019, 55, 8514. (i) Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558. (j) Luo, J.; Zhang, T.; Wang, L.; Liao, G.; Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, Y.; Lin, X.-F.; Shi, B.-F. Angew. Chem., Int. Ed. 2019, 58, 6708. (k) Zhan, B.-B.; Wang, L.; Luo, J.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 3568. (l) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242.

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(61)
  • Abstract views(1794)
  • HTML views(401)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return