Citation: Zhang Ronghua, Xu Bing, Zhang Zhanming, Zhang Junliang. Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes[J]. Acta Chimica Sinica, ;2020, 78(3): 245-249. doi: 10.6023/A20010019 shu

Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes

  • Corresponding author: Zhang Zhanming, zhangzhanming12@163.com Zhang Junliang, jlzhang@chem.ecnu.edu.cn; junliangzhang@fudan.edu.cn
  • Received Date: 21 January 2020
    Available Online: 9 March 2020

    Fund Project: the Program of Eastern Scholar at Shanghai Institutions of Higher Learning and the China Postdoctoral Science Foundation 2019M650071the National Natural Science Foundation of China 21801078the Program of Eastern Scholar at Shanghai Institutions of Higher Learning and the China Postdoctoral Science Foundation 2019M661418the National Natural Science Foundation of China 21425205973 Program 2015CB856600Project supported by the National Natural Science Foundation of China (Nos. 21425205, 21672067, 21801078), 973 Program (No. 2015CB856600), and the Program of Eastern Scholar at Shanghai Institutions of Higher Learning and the China Postdoctoral Science Foundation (Nos. 2019M650071, 2019M661418)the National Natural Science Foundation of China 21672067

Figures(1)

  • Optically pure pyrrolidine ring systems are core structural motifs found in a range of bioactive compounds, natural products, pharmaceuticals and catalysts. The synthesis of optically pure pyrrolidine ring systems is no longer mysterious as a great number of studies concerning the catalytic asymmetric 1, 3-dipolar cycloaddition of iminoesters have been reported. Overall, the transition-metal-catalyzed asymmetric 1, 3-dipolar cycloaddition of iminoesters with electron-deficient alkenes is one of the most powerful and straightforward synthetic tools for the optically pure pyrrolidines. However, high diastereo-and enantioselectivities are requested simultaneously during the synthesis of chiral substituted pyrrolidine and it still remains a big challenge to develop an efficient way to achieve both of them. Recently, we developed a novel chiral sulfinamide mono-phosphine (Ming-Phos) which performed well in copper-catalyzed intermolecular cycloaddition of iminoesters with β-trifluoromethyl β, β-disubstituted enones or α-trifluoromethyl α, β-unsaturated esters. Encouraged by the satisfying results, herein we report the Ming-Phos/Cu-catalyzed asymmetric intermolecular[3+2] cycloaddition of azomethine ylides with nitroalkenes. To our delight, a new Ming-Phos M3 bearing a trifluoromethyl showed good performance in this type of inter-molecular cycloaddition with high diastereo-and enantioselectivities (up to 13:1 dr, 98% ee and 95% yield). High efficiency, high diastereo-and enantioselectivity, a novel ligand, an inexpensive copper catalyst, and good functional group tolerance make it worth to be considered as an efficient, reliable and atom-economic strategy for the synthesis of optically pyrrolidines. The general procedure is as following:the solution of M3 (5.5 mol%) and Cu(CH3CN)4BF4 (5 mol%) in methyl tert-butyl ether (MTBE, 6 mL) was stirred at room temperature for 2 h. After the reaction temperature was dropped to -30℃, azomethine ylides 2 (0.6 mmol), Cs2CO3 (0.15 mmol) and nitroalkene 1 (0.3 mmol) were added sequentially. After the nitroalkene 1 was consumed completely, the solvent was removed under reduced pressure. The crude product was analyzed with 1H NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel to afford the desired product.
  • 加载中
    1. [1]

      For recent reviews and selected examples on the application of pyrrolidines in the natural products and biologically molecules, see: (a) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.; Tang, M. Synlett 2004, 2670. (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139. (c) Enders, D.; Thiebes, C. Pure Appl. Chem. 2001, 73, 573. (d) Narayan, R.; Potowski, M.; Jia, Z. J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res. 2014, 47, 1296. (e) Kumar, I. RSC Adv. 2014, 4, 16397. (f) Randjelovic, J.; Simic, M.; Tasic, G.; Husinec, S.; Savic, V. Curr. Org. Chem. 2014, 18, 1073. (g) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodriguez-Garcı́a, I. Chem. Rev. 2008, 108, 3174, and references therein.

    2. [2]

    3. [3]

      For recent reviews about 1, 3-dipolar cycloadditions of iminoesters, see: (a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247. (b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887. (c) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Chem. Rev. 2008, 108, 3174. (d) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132. (e) Engels, B.; Christl, M. Angew. Chem., Int. Ed. 2009, 48, 7968. (f) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784. (g) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703. (h) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492. (i) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660. (j) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366. (k) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10. (l) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37, 1166. (m) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. (n) Fang, X.; Wang, C.-J. Org. Biomol. Chem. 2018, 16, 2591.

    4. [4]

    5. [5]

      Allway, P.; Grigg, R. Tetrahedron Lett. 1991, 32, 5817.  doi: 10.1016/S0040-4039(00)93563-9

    6. [6]

      Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.  doi: 10.1021/ja025969x

    7. [7]

      (a) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979. (b) Arai, T.; Yokoyama, N.; Mishiro, A.; Sato, H. Angew. Chem., Int. Ed. 2010, 49, 7895. (c) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W. Angew. Chem., Int. Ed. 2015, 54, 5255. (d) Feng, B.; Chen, J.-R.; Yang, Y.-F.; Lu, B.; Xiao, W. J. Chem. Eur. J. 2018, 24, 1714.

    8. [8]

      For applications of Ming-Phos in asymmetric catalysis, see: (a) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X. L.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 4350. (b) Chen, M.; Zhang, Z.-M.; Yu, Z.; Qiu, H.; Ma, B.; Wu, H.-H.; Zhang, J. ACS Catal. 2015, 5, 7488. (c) Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 6324. (d) Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y.; Zhang, J. ACS Catal. 2017, 7, 210. (e) Wang, Y.; Zhang, Z.-M.; Liu, F.; He, Y.; Zhang, J. Org. Lett. 2018, 20, 6403. (f) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018. (g) Wu, Y.; Xu, B.; Liu, B.; Zhang, Z. M.; Liu, Y. Org. Biomol. Chem. 2019, 17, 1395. (h) Zhou, L.; Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang Z.-M.; Zhang, J. Angew. Chem., Int. Ed. 2020, 59, 2769. (i) Zhou, L.; Xu, B.; Ji, D.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. DOI: 10.1002/cjoc.202000034.

  • 加载中
    1. [1]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(21)
  • Abstract views(2308)
  • HTML views(366)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return