Citation: Dai Mimi, Wang Jian, Li Linge, Wang Qi, Liu Meinan, Zhang Yuegang. High-performance Oxygen Evolution Catalyst Enabled by Interfacial Effect between CeO2 and FeNi Metal-organic Framework[J]. Acta Chimica Sinica, ;2020, 78(4): 355-362. doi: 10.6023/A20010017 shu

High-performance Oxygen Evolution Catalyst Enabled by Interfacial Effect between CeO2 and FeNi Metal-organic Framework

  • Corresponding author: Liu Meinan, mnliu2013@sinano.ac.cn Zhang Yuegang, yuegang.zhang@tsinghua.edu.cn
  • Received Date: 16 January 2020
    Available Online: 4 April 2020

    Fund Project: the National Natural Science Foundation of China 21303129Project supported by the National Natural Science Foundation of China (Nos. 21433013, 21303129), Outstanding Youth Fund of Jiangxi Province (No. 20192BCB23028) and the Science and Technology Project of Jiangxi Province (No. 20192BCD40017)Outstanding Youth Fund of Jiangxi Province 20192BCB23028the National Natural Science Foundation of China 21433013the Science and Technology Project of Jiangxi Province 20192BCD40017

Figures(6)

  • Oxygen evolution reaction (OER) is a crucial half reaction of electrochemical water splitting and metal-air batteries. But its sluggish four-electron reaction leads to a high overpotential. Current commercial OER catalysts are mainly noble metal-based materials, but their high cost restricts their broad application. Therefore, extensive efforts have been devoted to exploring low-cost and efficient OER catalysts. Nonprecious metal-based materials have been regarded as promising OER catalyst candidates, due to their abundancy on the earth, controllable morphologies and tunable chemical states. Among various nonprecious metal-based materials, metal-organic frameworks (MOFs) have attracted much attention, because of their large specific surface area and rich metal centers. However, their poor electrochemical activities, stabilities and conductivities severely affect their application in OER catalysis. To improve the activities of MOFs, several methods have been adopted, such as synthesizing ultrathin nanosheets, growing MOFs on nickel foam or carbon cloth, doping heteroatoms, and introducing synergistic interactions between two materials. In 1970, Wagner proposed a space-charge theory, which indicates that the carrier property can be tuned through adjusting interface. Inspired by this theory, constructing metal oxide-catalyst interface seems to be a promising strategy to improve activities of catalysts. CeO2 is a well-known cocatalyst due to its reversible Ce3+/Ce4+ redox. Previous works have demonstrated that OER performance can be effectively improved through introducing CeO2 since it can speed up the electron mobility and induce strong interaction between CeO2 and metal sites. In this work, an efficient OER catalyst was achieved through introducing CeO2 into FeNi MOF catalyst. FeNi MOF nanosheet arrays grown on nickel foam was firstly prepared via a solvothermal process. Then CeO2 nanoclusters (5 nm) were coated onto FeNi MOF surface by electrodeposition. A series of characterizations were employed to study the morphology, structure and surface electronic state information of the as-obtained CeO2/FeNi MOF. From X-ray photoelectron spectroscopic analysis, the doping of CeO2 clusters and the strong electronic interaction between CeO2 clusters and FeNi MOF induce the formation of Fe/Ni-O-Ce bonds and optimize the electronic structures of Fe/Ni sites, which will enhance OER activities. The OER performance tests confirm that CeO2/FeNi MOF indeed exhibits a superior OER activity than FeNi MOF alone. The hybrid catalyst delivers a higher mass activity (235.4 A·g-1) and a faster turnover frequency (0.065 s-1) than those of FeNi MOF (43.8 A·g-1, 0.018 s-1). Compared with FeNi MOF, CeO2/FeNi MOF also shows better OER kinetics, as evidenced by a decreased Tafel slope, a reduced charge transfer resistance. Besides, CeO2/FeNi MOF presents an outstanding stability (50 h, 50 mA·cm-2). All these features make our CeO2/FeNi MOF a potential catalyst in the future application. The interfacial strategy through introducing CeO2 to modulate Fe and Ni active sites may open a door for developing high-performance OER catalysts in future.
  • 加载中
    1. [1]

      Song, F.; Ding, Y.; Zhao, C. Acta Chim. Sinica 2014, 72, 133(in Chinese).

    2. [2]

      Cheng, F.; Chen, J. Acta Chim. Sinica 2013, 71, 473(in Chinese).  doi: 10.3866/PKU.WHXB201212273

    3. [3]

      Guo, Y.; Yao, Y.; Li, H.; He, L.; Zhu, Z.; Yang, Z.; Gong, L.; Liu, C.; Zhao, D. Acta Chim. Sinica 2017, 75, 903(in Chinese).  doi: 10.3866/PKU.WHXB201702091

    4. [4]

      Zhou, P.; He, J.; Zou, Y.; Wang, Y.; Xie, C.; Chen, R.; Zang, S.; Wang, S. Sci. China Chem. 2019, 62, 1365.  doi: 10.1007/s11426-019-9511-x

    5. [5]

      Huang, Y.; Li, M.; Yang, W.; Yu, Y.; Hao, S. Sci. China Mater. 2020, 63, 240.  doi: 10.1007/s40843-019-1171-3

    6. [6]

      Wang, Y.; Wang, M.; Li, J.; Wei, Z. Acta Chim. Sinica 2019, 77, 84(in Chinese).
       

    7. [7]

      Yang, H.; Wang, C.; Zhang, Y.; Wang, Q. Sci. China Mater. 2019, 62, 681.  doi: 10.1007/s40843-018-9356-1

    8. [8]

      Xiong, X.; Cai, Z.; Zhou, D.; Zhang, G.; Zhang, Q.; Jia, Y.; Duan, X.; Xie, Q.; Lai, S.; Xie, T.; Li, Y.; Sun, X.; Duan, X. Sci. China Mater. 2018, 61, 939.  doi: 10.1007/s40843-017-9214-9

    9. [9]

      Li, P.; Zhao, X.; Duan, X.; Li, Y.; Kuang, Y.; Sun, X. Sci. China Mater. 2020, 63, 356.  doi: 10.1007/s40843-019-1215-9

    10. [10]

      Senthil Raja, D.; Lin, H.-W.; Lu, S.-Y. Nano Energy 2019, 57, 1.  doi: 10.1016/j.nanoen.2018.12.018

    11. [11]

      Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. Adv. Energy Mater. 2018, 8, 1800584.  doi: 10.1002/aenm.201800584

    12. [12]

      Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113(in Chinese).  doi: 10.3969/j.issn.0253-2409.2016.01.016

    13. [13]

      Rui, K.; Zhao, G.; Chen, Y.; Lin, Y.; Zhou, Q.; Chen, J.; Zhu, J.; Sun, W.; Huang, W.; Dou, S. X. Adv. Funct. Mater. 2018, 28, 1801554.  doi: 10.1002/adfm.201801554

    14. [14]

      Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; Lv, J.; Wang, J.; Zhang, J.; Khattak, A. M.; Khan, N. A.; Wei, Z.; Zhang, J.; Liu, S.; Zhao, H.; Tang, Z. Nat. Energy 2016, 1, 16184.  doi: 10.1038/nenergy.2016.184

    15. [15]

      Raja, D. S.; Chuah, X.-F.; Lu, S.-Y. Adv. Energy Mater. 2018, 8, 1801065.  doi: 10.1002/aenm.201801065

    16. [16]

      Wagner, C. J. Phys. Chem. Solids 1972, 33, 1051.  doi: 10.1016/S0022-3697(72)80265-8

    17. [17]

      Liu, Z.; Li, N.; Zhao, H.; Zhang, Y.; Huang, Y.; Yin, Z.; Du, Y. Chem. Sci. 2017, 8, 3211.  doi: 10.1039/C6SC05408K

    18. [18]

      Zhao, D.; Pi, Y.; Shao, Q.; Feng, Y.; Zhang, Y.; Huang, X. ACS Nano 2018, 12, 6245.  doi: 10.1021/acsnano.8b03141

    19. [19]

      Liu, Y.; Ma, C.; Zhang, Q.; Wang, W.; Pan, P.; Gu, L.; Xu, D.; Bao, J.; Dai, Z. Adv. Mater. 2019, 31, 1900062.  doi: 10.1002/adma.201900062

    20. [20]

      He, X.; Yi, X.; Yin, F.; Chen, B.; Li, G.; Yin, H. J. Mater. Chem. A 2019, 7, 6753.  doi: 10.1039/C9TA00302A

    21. [21]

      Kim, J.-H.; Shin, K.; Kawashima, K.; Youn, D. H.; Lin, J.; Hong, T. E.; Liu, Y.; Wygant, B. R.; Wang, J.; Henkelman, G.; Mullins, C. B. ACS Catal. 2018, 8, 4257.  doi: 10.1021/acscatal.8b00820

    22. [22]

      Gao, W.; Xia, Z.; Cao, F.; Ho, J. C.; Jiang, Z.; Qu, Y. Adv. Funct. Mater. 2018, 28, 1706056.  doi: 10.1002/adfm.201706056

    23. [23]

      Yu, J.; Cao, Q.; Li, Y.; Long, X.; Yang, S.; Clark, J. K.; Nakabayashi, M.; Shibata, N.; Delaunay, J.-J. ACS Catal. 2019, 9, 1605.  doi: 10.1021/acscatal.9b00191

    24. [24]

      Wang, B.; Xi, P.; Shan, C.; Chen, H.; Xu, H.; Iqbal, K.; Liu, W.; Tang, Y. Adv. Mater. Interfaces 2017, 4, 1700272.  doi: 10.1002/admi.201700272

    25. [25]

      Long, X.; Lin, H.; Zhou, D.; An, Y.; Yang, S. ACS Energy Lett. 2018, 3, 290.  doi: 10.1021/acsenergylett.7b01130

    26. [26]

      Liu, Q.; Wang, L.; Liu, X.; Yu, P.; Tian, C.; Fu, H. Sci. China Mater. 2019, 62, 624.  doi: 10.1007/s40843-018-9359-7

    27. [27]

      Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Adv. Mater. 2017, 29, 1701546.  doi: 10.1002/adma.201701546

    28. [28]

      Cai, Z.; Bi, Y.; Hu, E.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X.; Kuang, Y.; Li, Y.; Yang, X.-Q.; Wang, H.; Sun, X. Adv. Energy Mater. 2017, 1701694.

    29. [29]

      Saito, M.; Roberts, C. A.; Ling, C. J. Phys. Chem. C 2015, 119, 17202.  doi: 10.1021/acs.jpcc.5b04569

    30. [30]

      Gao, Z. W.; Ma, T.; Chen, X. M.; Liu, H.; Cui, L.; Qiao, S. Z.; Yang, J.; Du, X. W. Small 2018, 14, 1800195.  doi: 10.1002/smll.201800195

    31. [31]

      Luo, P.; Sun, F.; Deng, J.; Xu, H.; Zhang, H.; Wang, Y. Acta Phys. -Chim. Sin. 2018, 34, 1397.

    32. [32]

      Zhang, B.; Jiang, K.; Wang, H.; Hu, S. Nano Lett. 2019, 19, 530.  doi: 10.1021/acs.nanolett.8b04466

    33. [33]

      Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. J. Am. Chem. Soc. 2015, 137, 3638.  doi: 10.1021/jacs.5b00281

    34. [34]

      Baek, M.; Kim, G. W.; Park, T.; Yong, K. Small 2019, 1905501.

    35. [35]

      Yang, L.; Zhu, G.; Wen, H.; Guan, X.; Sun, X.; Feng, H.; Tian, W.; Zheng, D.; Cheng, X.; Yao, Y. J. Mater. Chem. A 2019, 7, 8771.  doi: 10.1039/C9TA00819E

    36. [36]

      Cao, C.; Ma, D. D.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Adv. Funct. Mater. 2019, 29, 1807418.  doi: 10.1002/adfm.201807418

    37. [37]

      Li, W.; Lv, J.; Li, Q.; Xie, J.; Ogiwara, N.; Huang, Y.; Jiang, H.; Kitagawa, B.; Xu, G.; Wang, Y. J. Mater. Chem. A 2019, 7, 10431.  doi: 10.1039/C9TA02169H

    38. [38]

      Zhang, C.; Chen, Z.; Lian, Y.; Chen, Y.; Li, Q.; Gu, Y.; Lu, Y.; Deng, Z.; Peng, Y. Acta Phys.-Chim. Sin. 2019, 35, 1404(in Chinese).  doi: 10.3866/PKU.WHXB201905030

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    15. [15]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    18. [18]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    19. [19]

      Lixian Cai Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(25)
  • Abstract views(1726)
  • HTML views(554)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return