Citation: Tang Gong-ao, Mao Kun, Zhang Jing, Lyu Pin, Cheng Xueyi, Wu Qiang, Yang Lijun, Wang Xizhang, Hu Zheng. Hierarchical Nitrogen-doped Carbon Nanocages as High-rate Long-life Cathode Material for Rechargeable Magnesium Batteries[J]. Acta Chimica Sinica, ;2020, 78(5): 444-450. doi: 10.6023/A20010011 shu

Hierarchical Nitrogen-doped Carbon Nanocages as High-rate Long-life Cathode Material for Rechargeable Magnesium Batteries

  • Corresponding author: Wu Qiang, wqchem@nju.edu.cn Wang Xizhang, wangxzh@nju.edu.cn
  • Received Date: 12 January 2020
    Available Online: 15 May 2020

    Fund Project: the National Natural Science Foundation of China 21972061the National Natural Science Foundation of China 21832003the jointly financial support from the National Key Research and Development Program of China 2017YFA0206500the National Natural Science Foundation of China 51571110the National Natural Science Foundation of China 21573107Project supported by the jointly financial support from the National Key Research and Development Program of China (2018YFA0209100, 2017YFA0206500) and the National Natural Science Foundation of China (21773111, 21972061, 21832003, 21573107, 51571110)the jointly financial support from the National Key Research and Development Program of China 2018YFA0209100the National Natural Science Foundation of China 21773111

Figures(5)

  • Rechargeable magnesium batteries (rMBs) are promising next-generation secondary batteries owing to the low-cost, high safety and dendrite-free property of Mg metal. The key of rMBs technology is to develop high-performance cathode materials. Usually, the intercalation-type cathodes such as Mo6S8, MoS2 and Ti3C2Tx suffer from the inferior rate performance owing to the sluggish Mg2+ ions solid-diffusion kinetics, and the conversion-type cathodes such as S and CuS are beset with the poor cycling stability owing to the pulverization and loss of active species. Recently, sp2 carbon materials exhibited considerable magnesium storage performance through an interfacial charge storage/release. Ideal carbon-based cathodes for rMBs should possess the features of high specific surface area and abundant active sites for magnesium storage, high conductivity and porous structure for facilitating charge transfer, as well as high mechanical stability. Herein, we employed the hierarchical nitrogen-doped carbon nanocages (hNCNC) featuring large surface area, abundant surface defects, coexisting micro-meso-macropores and high conductivity as the rMBs cathode for the first time, which exhibited high discharge capacity of 71 mAh·g-1 at 100 mA·g-1, excellent rate performance (60 mAh·g-1 at 2000 mA·g-1) and ultra-high cycling stability (83% capacity retention after 1000 cycles at 1000 mA·g-1). The capacitive magnesium storage mechanism is predominant in the charging-discharging process. Theoretical studies reveal that magnesium ions are adsorbed on the carbon, pyridinic-nitrogen or pyrrolic-nitrogen atoms at the edge of micropores. The excellent magnesium storage performance of hNCNC is attributed to the following reasons:(i) the hNCNC with large surface area (1590 m2·g-1), abundant micropore defects and high content of pyridinic and pyrrolic nitrogen (4.49 at.%) provides sufficient active sites for magnesium storage, resulting in the high discharge capacity; (ii) the coexisting micro-meso-macropores structure, good conductivity and improved wettability via N-doping facilitate the charge transfer kinetics, and decrease the equivalent series resistance of rMBs, thereby leading to the improved rate capability; (iii) the robust scaffold of hNCNC and the capacitive-dominated magnesium storage mechanism ensure the high cycling stability. This study demonstrates the high-rate and durable performance of hNCNC in rMBs, and suggests a promising strategy to improve the rMBs performance by increasing edges and suitable dopants of nanocarbons.
  • 加载中
    1. [1]

      Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Prog. Mater. Sci. 2014, 66, 1.  doi: 10.1016/j.pmatsci.2014.04.001

    2. [2]

      Li, L.; Lu, Y.; Zhang, Q.; Zhao, S.; Hu, Z.; Chou, S. L. Small 2019, 1902767.  doi: 10.1002/smll.201902767

    3. [3]

      Zhang, C. H.; Li, N. W.; Yao, H. R.; Liu, L.; Yin, Y. X.; Guo, Y. G. Acta Chim. Sinica 2017, 75, 206.  doi: 10.7503/cjcu20160624
       

    4. [4]

      Zheng, Y. P.; NuLi, Y.; Yang, J.; Chen, Q.; Wang, J. L. Chem. Ind. Eng. Prog. 2011, 30, 1024.
       

    5. [5]

      Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724.  doi: 10.1038/35037553

    6. [6]

      NuLi, Y.; Yang, J.; Zheng, Y. P.; Wang, J. L. J. Inorg. Mater. 2011, 26, 129.
       

    7. [7]

      Mori, T.; Masese, T.; Orikasa, Y.; Huang, Z. D.; Okado, T.; Kim, J.; Uchimoto, Y. Phys. Chem. Chem. Phys. 2016, 18, 13524.  doi: 10.1039/C6CP00448B

    8. [8]

      NuLi, Y.; Zheng, Y.; Wang, Y.; Yang, J.; Wang, J. J. Mater. Chem. 2011, 21, 12437.  doi: 10.1039/c1jm10485c

    9. [9]

      Perera, S. D.; Archer, R. B.; Damin, C. A.; Mendoza-Cruz, R.; Rhodes, C. P. J. Power Sources 2017, 343, 580.  doi: 10.1016/j.jpowsour.2017.01.052

    10. [10]

      Xiao, Y.; Zou, J. X.; Guo, R.; Zeng, X. Q.; Ding, W. J. Chin. J. Power Sources 2019, 43, 1676.  doi: 10.3969/j.issn.1002-087X.2019.10.027

    11. [11]

      Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Langmuir 2013, 29, 10964.  doi: 10.1021/la402391f

    12. [12]

      Liu, Y.; Jiao, L.; Wu, Q.; Du, J.; Zhao, Y.; Si, Y.; Wang, Y.; Yuan, H. J. Mater. Chem. A 2013, 1, 5822.  doi: 10.1039/c3ta10786h

    13. [13]

      Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K. A.; Ceder, G.; Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273.  doi: 10.1039/C6EE00724D

    14. [14]

      Xu, M.; Lei, S.; Qi, J.; Dou, Q.; Liu, L.; Lu, Y.; Huang, Q.; Shi, S.; Yan, X. ACS Nano 2018, 12, 3733.  doi: 10.1021/acsnano.8b00959

    15. [15]

      Zhang, Y.; Geng, H.; Wei, W.; Ma, J.; Chen, L.; Li, C. C. Energy Storage Mater. 2019, 20, 118.  doi: 10.1016/j.ensm.2018.11.033

    16. [16]

      Zhang, Z.; Dong, S.; Cui, Z.; Du, A.; Li, G.; Cui, G. Small Methods 2018, 2, 1800020.  doi: 10.1002/smtd.201800020

    17. [17]

      Wang, L.; Jiang, B.; Vullum, P. E.; Svensson, A. M.; Erbe, A.; Selbach, S. M.; Xu, H.; Vullum-Bruer, F. ACS Nano 2018, 12, 2998.  doi: 10.1021/acsnano.8b00753

    18. [18]

      Dubey, R. J.; Colijn, T.; Aebli, M.; Hanson, E. E.; Widmer, R.; Kravchyk, K. V.; Kovalenko, M. V.; Stadie, N. P. ACS Appl. Mater. Interfaces 2019, 11, 39902.  doi: 10.1021/acsami.9b11968

    19. [19]

      Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.  doi: 10.1021/acs.accounts.6b00541

    20. [20]

      Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Adv. Mater. 2019, 1904177.  doi: 10.1002/adma.201904177

    21. [21]

      Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W.; Liu, J.; Hu, Z. Adv. Mater. 2015, 27, 3541.  doi: 10.1002/adma.201500945

    22. [22]

      Lyu, Z. Y.; Yang, L. J.; Xu, D.; Zhao, J.; Lai, H. W.; Jiang, Y. F.; Wu, Q.; Li, Y.; Wang, X. Z.; Hu, Z. Nano Res. 2015, 8, 3535.  doi: 10.1007/s12274-015-0853-4

    23. [23]

      Cai, Y. J.; Liu, C. X.; Zhuo, O.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2017, 75, 686.  doi: 10.7503/cjcu20160678
       

    24. [24]

      Wu, Z. S.; Ren, W.; Xu, L.; Li, F.; Cheng, H. M. ACS Nano 2011, 5, 5463.  doi: 10.1021/nn2006249

    25. [25]

      Xu, D.; Chen, C.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y.; Zhang, L. Adv. Energy Mater. 2016, 6, 1501929.  doi: 10.1002/aenm.201501929

    26. [26]

      Su, F.; Poh, C. K.; Chen, J. S.; Xu, G.; Wang, D.; Li, Q.; Lin, J.; Lou, X. W. Energy Environ. Sci. 2011, 4, 717.  doi: 10.1039/C0EE00277A

    27. [27]

      Zhang, Y.; Xie, J. J.; Han, Y. L.; Li, C. L. Adv. Funct. Mater. 2015, 25, 7300.  doi: 10.1002/adfm.201503639

    28. [28]

      Li, T.; Qin, A.; Wang, H.; Wu, M.; Zhang, Y.; Zhang, Y.; Zhang, D.; Xu, F. Electrochim. Acta 2018, 263, 168.  doi: 10.1016/j.electacta.2018.01.067

    29. [29]

      Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7, 1597.  doi: 10.1039/c3ee44164d

    30. [30]

      Liu, M.; Fan, H.; Zhuo, O.; Du, X.; Yang, L. Q.; Wang, P.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Chem. Eur. J. 2019, 25, 3843.  doi: 10.1002/chem.201805213

    31. [31]

      Wang, L.; Wang, Z.; Vullum, P. E.; Selbach, S. M.; Svensson, A. M.; Vullum-Bruer, F. Nano Lett. 2018, 18, 763.  doi: 10.1021/acs.nanolett.7b03978

    32. [32]

      Canepa, P.; Gautam, G. S.; Malik, R.; Jayaraman, S.; Rong, Z.; Zavadil, K. R.; Persson, K.; Ceder, G. Chem. Mater. 2015, 27, 3317.  doi: 10.1021/acs.chemmater.5b00389

    33. [33]

      Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. J. Electrochem. Soc. 2008, 155, A103.  doi: 10.1149/1.2806175

    34. [34]

      Delley, B. J. Chem. Phys. 2000, 113, 7756.

    35. [35]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(13)
  • Abstract views(2190)
  • HTML views(408)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return