Citation: Qie Shuyan, Hao Ying, Liu Zongjian, Wang Jin, Xi Jianing. Advances in Cyclodextrin Polymers and Their Applications in Biomedicine[J]. Acta Chimica Sinica, ;2020, 78(3): 232-244. doi: 10.6023/A20010006 shu

Advances in Cyclodextrin Polymers and Their Applications in Biomedicine

  • Corresponding author: Wang Jin, jwang2014@sinano.ac.cn Xi Jianing, xijn888@sina.com
  • These authors contributed equally to this work
  • Received Date: 8 January 2020
    Available Online: 26 February 2020

    Fund Project: the National Natural Science Foundation of China 91963124Project supported by the National Natural Science Foundation of China (Nos. 91963124, 51773225, 51903246)the National Natural Science Foundation of China 51773225the National Natural Science Foundation of China 51903246

Figures(16)

  • Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides composed of α-1, 4-linked D-glucopyranose units. The most commonly used CDs are α-, β-, and γ-CD, which consist of 6, 7, and 8 D-glucose units, respectively. They possess a relative hydrophobic inner cavity and a hydrophilic outer surface and can form inclusion complexes with various small molecules, metal ions and polymers, tailoring the physicochemical property of the guests, and thus have been widely used in the fields of pharmacy, food, chemistry, chromatography, catalysis, biotechnology, agriculture, cosmetics, hygiene, medicine, textiles and the environment, etc. However, it is difficult to manipulate the native CDs in some specific applications, they are crystallized solid and soluble in water but insoluble in most organic solvents. CD polymers (CDPs), such as crosslinked CDs or CD based hydrogels with various crosslinkers by chemical reactions, and CD based supramolecular polymers formed by physical interactions, can achieve the integration effect and synergy effect of CDs, crosslinkers and guest polymers, not only possessing the inclusion capacity of CDs, but also endowing CDs with other properties introduced by crosslinkers. The CDPs can be easily manipulated and they exhibit unique features that native CDs are lack of. Hence, the design, synthesis and applications of CDPs have attracted broad interests in recent years. This review focuses on the recent progress in CDPs, and different types of CDPs are identified and classified based on the structures and functions, namely CD based polyrotaxane, grafted CDs, crosslinked CDs and linear CDs, etc. Besides, the synthetic methodologies of CDPs are highlighted. Particular attention is paid to the breakthrough on the CDPs in the past five years, and their applications in biomedicine, such as drug delivery, gene delivery, target delivery, controlled release and cell imaging are discussed in detail. The typical applications in other fields such as absorption, environment remediation, thermal insulation, catalysis and slid-ring gels are also discussed in brief. Finally, the review provides brief summary and prospect of CDPs.
  • 加载中
    1. [1]

      Crini, G. Chem. Rev. 2014, 114, 10940.  doi: 10.1021/cr500081p

    2. [2]

      Yu, G.; Jie, K.; Huang, F. Chem. Rev. 2015, 115, 7240.  doi: 10.1002/chin.201539262

    3. [3]

      Chen, Y.; Gui, X.; Duan, Z.; Zhu, L.; Xiang, Y.; Xia, D. Chin. J. Org. Chem. 2019, 39, 1284 (in Chinese).
       

    4. [4]

      Shao, W.; Liu, X.; Wang, T.; Hu, X. Chin. J. Org. Chem. 2018, 38, 1107 (in Chinese).  doi: 10.6023/cjoc201711027

    5. [5]

      Liu, A.; Xiong, C.; Ma, X.; Ma, W.; Sun, R. Chin. J. Chem. 2019, 37, 793.  doi: 10.1002/cjoc.201900106

    6. [6]

      Chen, X.; Chen, Y.; Liu, Y. Chin. J. Chem. 2018, 36, 526.  doi: 10.1002/cjoc.201800063

    7. [7]

      Zhang, Y.; Chen, Y.; Li, J.; Liang, L.; Liu, Y. Acta Chim. Sinica 2018, 76, 622.
       

    8. [8]

      Ren, K.; He, J.; Zhang, M.; Wu, Y.; Ni, P. Acta Chim. Sinica 2015, 73, 1038 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.09.003
       

    9. [9]

      Li, Q.; Wang, J.; Ye, L.; Zhang, A.; Zhang, X.; Feng, Z. ChemNanoMat 2019, 5, 838.  doi: 10.1002/cnma.201900154

    10. [10]

      Frieler, L.; Ho, T. M.; Anthony, A.; Hidefumi, Y.; Yago, A. J. E.; Bhandari, B. R. J. Food Sci. Technol. 2019, 56, 1519.  doi: 10.1007/s13197-019-03643-7

    11. [11]

      Ho, T. M.; Bhandari, B. R. Powder Technol. 2015, 17, 585.

    12. [12]

      Morin-Crini, N.; Crini, G. Prog. Polym. Sci. 2013, 38, 344.  doi: 10.1016/j.progpolymsci.2012.06.005

    13. [13]

      Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L. D.; Fenyvesi, E.; Crini, G. Prog. Polym. Sci. 2018, 78, 1.

    14. [14]

      Manakker, F. V. D.; Vermonden, T.; Nostrum, C. F.; Hennink, W. E. Biomacromolecules 2009, 10, 3157.  doi: 10.1021/bm901065f

    15. [15]

      Solms, J.; Egli, R. H. Helv. Chim. Acta 1965, 48, 1225.  doi: 10.1002/hlca.19650480603

    16. [16]

      Solms, J. US 3420788, 1969.

    17. [17]

      Harada, A.; Li, J.; Kamachi, M. J. Am. Chem. Soc. 1994, 116, 3192.  doi: 10.1021/ja00087a004

    18. [18]

      Xu, M.; Zhang, Y. Polym. Mater. Sci. Eng. 2010, 26, 162 (in Chinese).
       

    19. [19]

      Arisaka, Y.; Yui, N. J. Mater. Chem. B 2019, 7, 2123.  doi: 10.1039/C9TB00256A

    20. [20]

      Gao, P.; Wang, P.; Geng, X.; Ye, L.; Zhang, A.; Feng, Z. Acta Chim. Sinica 2013, 71, 347 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2013.03.014
       

    21. [21]

      Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415 (in Chinese).
       

    22. [22]

      Arunachalam, M.; Harry, W. G. Prog. Polym. Sci. 2014, 39, 1043.  doi: 10.1016/j.progpolymsci.2013.11.005

    23. [23]

      Hashidzume, A.; Yamaguchi, H.; Harada, A. Eur. J. Org. Chem. 2019, 21, 3344.

    24. [24]

      Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. Chem. Rev. 2009, 109, 5974.  doi: 10.1021/cr9000622

    25. [25]

      Okada, M.; Kamachi, M.; Harada, A. Macromolecules 1999, 32, 7202.  doi: 10.1021/ma990806n

    26. [26]

      Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M. Macromol. Rapid. Commun. 1997, 18, 535.  doi: 10.1002/marc.1997.030180701

    27. [27]

      Rusa, C. C.; Tonelli, A. E. Macromolecules 2000, 33, 5321.  doi: 10.1021/ma000746h

    28. [28]

      Harada, A.; Suzuki, S.; Okada, M.; Kamachi, M. Macromolecules 1996, 29, 5611.  doi: 10.1021/ma960428b

    29. [29]

      Okumura, H.; Kawaguchi, Y.; Harada, A. Macromolecules 2001, 34, 6338.  doi: 10.1021/ma010516i

    30. [30]

      Loethen, S.; Kim, J. M.; Thompson, D. H. Polym. Rev. 2007, 47, 383.  doi: 10.1080/15583720701455145

    31. [31]

      Wang, P. J.; Wang, J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2012, 53, 2361.  doi: 10.1002/macp.201200105

    32. [32]

      Wang, J.; Li, S.; Ye, L.; Zhang, A.; Feng, Z. G. Macromol. Rapid Commun. 2012, 33, 1143.  doi: 10.1002/marc.201200017

    33. [33]

      Kato, K.; Kamotsu, H.; Ito, K. Macromolecules 2010, 43, 8799.  doi: 10.1021/ma101811n

    34. [34]

      Yu, S.; Zhang, Y.; Wang, X.; Zhen, X.; Zhang, Z.; Wu, W.; Jiang, X. Angew. Chem., Int. Ed. 2013, 52, 7272.  doi: 10.1002/anie.201301397

    35. [35]

      Zhang, X. W.; Zhu, X. Q.; Tong, X. M.; Ye, L.; Zhang, A.; Feng, Z. G. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5283.  doi: 10.1002/pola.22856

    36. [36]

      Ren, L. X.; Ke, F. Y.; Chen, Y. M.; Liang, D.; Huang, J. Macromolecules 2008, 41, 5295.  doi: 10.1021/ma800632m

    37. [37]

      Dai, X. H.; Dong, C. M.; Yan, D. Y. J. Phys. Chem. B 2008, 112, 3644.  doi: 10.1021/jp710698c

    38. [38]

      Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. J. Phys. Chem. B 2010, 114, 5342.

    39. [39]

      Wang, J.; Ye, L.; Zhang, A.; Feng, Z. G. J. Mater. Chem. 2011, 21, 3243.  doi: 10.1039/C0JM02803G

    40. [40]

      Wang, J.; Gao, P.; Wang, P. J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2011, 52, 374.

    41. [41]

      Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. Polym. Chem. 2011, 2, 931.  doi: 10.1039/C0PY00360C

    42. [42]

      Wang, J.; Wang, P. J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2011, 52, 5362.  doi: 10.1016/j.polymer.2011.09.023

    43. [43]

      Wang, J.; Gao, P.; Jiang, L.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2012, 53, 2864.  doi: 10.1016/j.polymer.2012.05.012

    44. [44]

      Duan, N.; Lu, H.; Ye, L.; Zhang, A.; Feng, Z. G. J. Phys. Chem. B 2019, 123, 5004.  doi: 10.1021/acs.jpcb.9b03005

    45. [45]

      Kong, T.; Ye, L.; Zhang, A.; Feng, Z. G.; Langmuir 2018, 34, 14076.

    46. [46]

      Gao, M.; Lu, H.; Song, R. H.; Ye, L.; Zhang, A.; Feng, Z. G. Polym. Chem. 2020, 11, 653.  doi: 10.1039/C9PY01619H

    47. [47]

      Wang, J.; Zhang, X. ACS Nano 2015, 9, 11389.  doi: 10.1021/acsnano.5b05281

    48. [48]

      Wang, J.; Du, R.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 1468.

    49. [49]

      Uenuma, S.; Maeda, R.; Yokayama, H.; Ito, K. Chem. Commun. 2019, 55, 4158.  doi: 10.1039/C9CC00511K

    50. [50]

      Uenuma, S.; Maeda, R.; Yokoyama, H.; Ito, K. Macromolecules 2019, 52, 3881.

    51. [51]

      Arisaka, Y.; Yui, N. Macromol. Rapid Commun. 2019, 40, 1900323.  doi: 10.1002/marc.201900323

    52. [52]

      Demirci, S.; Kinali-Demirci, S.; Jiang, S. Chem. Commun. 2017, 53, 3713.  doi: 10.1039/C7CC00193B

    53. [53]

      Zhang, L.; Zhao, J.; Wang, Y. Acta Chim. Sinica 2015, 73, 1182 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.10.005
       

    54. [54]

      Lucio, D.; Martinez-Oharriz, M. C.; Gu, Z.; He, Y.; Aranaz, P.; Vizmanos, J. L.; Irache, J. M. Int. J. Pharm. 2018, 547, 97.  doi: 10.1016/j.ijpharm.2018.05.064

    55. [55]

      Azmeera, V.; Tungala, K.; Adhikary, P.; Kumar, K.; Krishnamoorthi, S. Int. J. Biol. Macromol. 2017, 104, 1204.

    56. [56]

      Li, L.; Guo, X.; Wang, J.; Liu, P.; Prud'homme, R. K.; May, B. L.; Lincoln, S. F. Macromolecules 2008, 41, 8677.  doi: 10.1021/ma8020147

    57. [57]

      Wang, J.; Guo, Z.; Xiong, J.; Wu, D.; Li, S.; Tao, Y.; Qin, Y.; Kong, Y. Int. J. Biol. Macromol. 2019, 125, 941.  doi: 10.1016/j.ijbiomac.2018.12.150

    58. [58]

      Shen, Y.; Niu, L.; Yu, Z.; Wang, M.; Shang, Z.; Yang, Y. Appl. Surf. Sci. 2018, 444, 42.  doi: 10.1021/jp710698c

    59. [59]

      Pooresmaeil, M.; Namazi, H. Colloids Surf. B: Biointer. 2018, 172, 17.

    60. [60]

      Zhang, B.; Yu, Q.; Zhang, Y. M.; Liu, Y. Chem. Commun. 2019, 55, 12200.

    61. [61]

      Bai, L.; Yan, H.; Bai, T.; Feng, Y.; Zhao, Y.; Ji, Y.; Feng, W.; Lu, T.; Nie, Y. Biomacromolecules 2019, 20, 4230.

    62. [62]

      Baimani, N.; Azar, P. A.; Husain, S. W.; Panahi, H. A.; Mehramizi, A. J. Chromatogr. A 2018, 1571, 38.  doi: 10.1016/j.chroma.2018.08.005

    63. [63]

      Helal, A. S.; Mazario, E.; Mayoral, A.; Decorse, P.; Losno, R.; Lion, C.; Ammar, S.; Hemadi, M. Environ. Sci. Nano 2018, 5, 158.  doi: 10.1039/C7EN00902J

    64. [64]

      Hong, S.; Li, Z.; Li, C.; Dong, C.; Shuang, S. Appl. Surface Sci. 2018, 427, 1189.  doi: 10.1016/j.apsusc.2017.08.201

    65. [65]

      Alsbaiee, A.; Smith, B. J.; Xiao, L.; Ling, Y.; Helbling, D. E.; Dichtel, W. R. Nature 2016, 529, 190.

    66. [66]

      Xu, G.; Xie, X.; Qin, L.; Hu, X.; Zhang, D.; Xu, J.; Li, D.; Ji, X.; Huang, Y.; Tu, Y.; Jiang, L.; Wei, D. Green Chem. 2019, 21, 6062.  doi: 10.1039/C9GC02422K

    67. [67]

      Wang, J.; Wang, X.; Zhang, X. J. Mater. Chem. A 2017, 5, 4308.  doi: 10.1039/C6TA09677H

    68. [68]

      Lenohardt, E. E.; Meador, M. A. B.; Wooley, K. L. Chem. Mater. 2018, 30, 6226.  doi: 10.1021/acs.chemmater.8b02843

    69. [69]

      Mizuno, S.; Asoh, T. A.; Takashima, Y.; Harada, A.; Uyama, H. Polym. Degrad. Stability 2019, 160, 136.  doi: 10.1016/j.polymdegradstab.2018.12.014

    70. [70]

      Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H. Angew. Chem. Int. Ed. 2006, 45, 4361.  doi: 10.1002/anie.200504539

    71. [71]

      Cheng, H.; Fan, X.; Wu, C.; Wang, X.; Wang, L. J.; Loh, X. J.; Li, Z.; Wu, Y. L. Macromol. Rapid Commun. 2019, 40, 1800207.

    72. [72]

      Shukula, A.; Singh, A. P.; Ray, B.; Aswal, V.; Kar, A. G.; Maiti, P. J. Colloid Interface Sci. 2019, 534, 215.

    73. [73]

      Cocq, A.; Rousseau, C.; Bricout, H.; Oliva, E.; Bonnet, V.; Djedaini-Pilard, F.; Monflier, E.; Tilloy, S. Eur. J. Org. Chem. 2019, 4863.

    74. [74]

      Furlan, A. L.; Buchoux, S.; Miao, Y.; Banchet, V.; Leteve, M.; Lambertyn, V.; Michel, J.; Sarazin, C.; Bonnet, V. New J. Chem. 2018, 42, 20171.  doi: 10.1039/C8NJ03237H

    75. [75]

      Arslan, M.; Sanyal, R.; Sanyal, A. Polym. Chem. 2020, 11, 615.

    76. [76]

      Seo, J. H.; Kakinoki, S.; Inoue, Y.; Yamaoka, T.; Ishihara, K.; Yui, N. J. Am. Chem. Soc. 2013, 135, 5513.

    77. [77]

      Zhang, Y.; Zhou, Q.; Jia, S.; Lin, K.; Fan, G.; Yuan, J.; Yu, S.; Shi, J. ACS Appl. Mater. Interfaces 2019, 11, 46427.

    78. [78]

      Rajendran, A. K.; Arisaka, Y.; Iseki, S.; Yui, N. ACS Biomater. Sci. Eng. 2019, 5, 5652.

    79. [79]

      Srinivasachari, S.; Fichter, K. M.; Reineke, T. M. J. Am. Chem. Soc. 2008, 130, 4618.

    80. [80]

      Li, J.; Yang, C.; Li, H.; Wang, X.; Goh, S. H.; Ding, J. L.; Wang, D. Y.; Leong, K. W. Adv. Mater. 2006, 18, 2969.  doi: 10.1002/adma.200600812

    81. [81]

      Zhang, J.; Zhang, L.; Li, S.; Yin, C.; Li, C.; Wu, W.; Jiang, X. ACS Biomater. Sci. Eng. 2018, 4, 1963.  doi: 10.1021/acsbiomaterials.7b00464

    82. [82]

      Zhang, Y.; Zhang, Z.; Chen, W.; Li, C.; Wu, W.; Jiang, X. Acta Polym. Sinica 2017, 48, 306 (in Chinese).  doi: 10.11777/j.issn1000-3304.2017.16268

    83. [83]

      Kim, H.; Han, J.; Park, J. H. J. Control. Release 2020, 319, 77.

    84. [84]

      Li, X.; Liu, H.; Li, J.; Deng, Z.; Li, L.; Liu, J.; Yuan, J.; Gao, P.; Yang, Y.; Zhong, S. Colloids Surf. B: Biointer. 2019, 183, 110425.

    85. [85]

      Huang, T.; Sheng, G.; Manchanda, P.; Emwas, A. H.; Lai, Z.; Nunes, S. P.; Peinemann, K. V. Sci. Adv. 2019, 5, eaax6976.

    86. [86]

      Pierre, A. C.; Pajonk, G. M. Chem. Rev. 2002, 102, 4243.

    87. [87]

      Wang, J.; Wei, Y.; He, W.; Zhang, X. RSC Adv. 2014, 4, 51146.

    88. [88]

      Wang, J.; Zhang, Y.; Wei, Y.; Zhang, X. Micropor. Mesopor. Mater. 2015, 218, 192.

    89. [89]

      Wang, J.; Zhang, Y.; Zhang, X. J. Mater. Chem. A 2016, 4, 11408.  doi: 10.1039/C6TA04306B

    90. [90]

      Li, X.; Wang, J.; Zhao, Y.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 16901.  doi: 10.1021/acsami.8b04081

    91. [91]

      Liu, R.; Wang, J.; Du, Y.; Liao, J.; Zhang, X. J. Solid State Chem. 2019, 279, 120971.

    92. [92]

      Jiang, L.; Kato, K.; Mayumi, K.; Yokoyama, H.; Ito, K. ACS Macro Lett. 2017, 6, 281.

    93. [93]

      Matias, T.; Marques, J.; Conceicao, F.; Maleki, H.; Quina, M. J.; Gando-Ferreira, L.; Valente, A. J. M.; Portugal, A.; Duraes, L. J. Sol-Gel Sci. Technol. 2017, 84, 409.  doi: 10.1007/s10971-017-4373-4

    94. [94]

      Zhou, K.; Li, Y.; Li, Q.; Du, Q.; Wang, D.; Sui, K.; Wang, C.; Li, H.; Xia, Y. J. Polym. Environ. 2018, 26, 3362.  doi: 10.1007/s10924-018-1219-2

    95. [95]

      Jia, H.; Tian, Q.; Xu, J.; Lu, L.; Ma, X.; Yu, Y. Microchim. Acta 2018, 185, 517.  doi: 10.1007/s00604-018-3056-3

    96. [96]

      Xie, Y.; Tu, X.; Ma, X.; Fang, Q.; Lu, L.; Yu, Y.; Liu, G.; Liu, C. Nanotechnology 2019, 30, 185502.

    97. [97]

      Noda, Y.; Hayashi, Y.; Ito, K. J. Appl. Polym. Sci. 2014, 131, 40509.

    98. [98]

      Li, S.; Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. Sci. China Chem. 2012, 55, 1115.  doi: 10.1007/s11426-012-4587-9

    99. [99]

      Li, S.; Wang, J.; Jiang, L.; Ye, L.; Zhang, A.; Feng, Z. G. Chin. J. Chem. 2012, 30, 2453.  doi: 10.1002/cjoc.201200280

    100. [100]

      Okumura, Y.; Ito, K. Adv. Mater. 2001, 13, 48.

    101. [101]

      Araki, J.; Ito, K. Soft Matter 2007, 3, 1456.  doi: 10.1039/b705688e

    102. [102]

      Voorhaar, L.; Hoogenboom, R. Chem. Soc. Rev. 2016, 45, 4013.  doi: 10.1039/C6CS00130K

    103. [103]

      Tan, M.; Wang, J.; Song, W.; Fang, J.; Zhang, X. J. Mater. Chem. A 2019, 7, 1244.

    104. [104]

      Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E. J. Control. Release 2014, 190, 254.  doi: 10.1016/j.jconrel.2014.03.052

    105. [105]

      Shinohaea, Y.; Kayashima, K.; Okumura, Y.; Zhao, C.; Ito, K.; Amemiya, Y. Macromolecules 2006, 39, 7386.  doi: 10.1021/ma061037s

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(100)
  • Abstract views(4644)
  • HTML views(1462)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return