Citation: Zhu Ren-Yi, Liao Kui, Yu Jin-Sheng, Zhou Jian. Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides[J]. Acta Chimica Sinica, ;2020, 78(3): 193-216. doi: 10.6023/A20010002 shu

Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides

  • Corresponding author: Yu Jin-Sheng, jsyu@chem.ecnu.edu.cn Zhou Jian, jzhou@chem.ecnu.edu.cn
  • Received Date: 1 January 2020
    Available Online: 21 February 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21725203, 21901074)the National Natural Science Foundation of China 21901074the National Natural Science Foundation of China 21725203

Figures(35)

  • P-Chiral phosphine oxides are a class of privileged structures, which have important applications in the field of medicinal chemistry, organic synthesis, life and material science. Recent years have witnessed significant progress in the catalytic asymmetric construction of such scaffolds. These advances are summarized in this review according to the following three major strategies:desymmetrization of prochiral tertiary phosphine oxides, (dynamic) kinetic resolution of tertiary phosphine oxides, and catalytic asymmetric reactions involving secondary phosphine oxides, and discusses the possible reaction mechanism, the advantage and disadvantage of each type of reactions, which would provide reference and inspiration for the researchers engaged in organic synthesis and organic phosphorus chemistry.
  • 加载中
    1. [1]

      (a) Dutartre, M.; Bayardon, J.; Jugé, S. Chem. Soc. Rev. 2016, 45, 5771. (b) Macia, E. Chem. Soc. Rev. 2005, 34, 691.

    2. [2]

      (a) Kazemi, M.; Tahmasbi, A. M.; Valizadeh, R.; Naserian, A. A.; Soni, A. Agric. Sci. Res. J. 2012, 2, 512. (b) Lamberth, C. Tetrahedron 2010, 66, 7239.

    3. [3]

      De Clercq, E. Clin. Microbiol. Rev. 2003, 16, 569.  doi: 10.1128/CMR.16.4.569-596.2003

    4. [4]

      (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b) Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S. Science 2015, 347, 737.

    5. [5]

      Duffy, M. P.; Delaunay, W.; Bouit, P.-A.; Hissler, M. Chem. Soc. Rev. 2016, 45, 5296.  doi: 10.1039/C6CS00257A

    6. [6]

      Ohmaru, Y.; Sato, N.; Mizutani, M.; Kotani, S.; Sugiura, M.; Nakajima, M. Org. Biomol. Chem. 2012, 10, 4562.  doi: 10.1039/c2ob25338k

    7. [7]

      Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.

    8. [8]

      Xu, B.; Zhu, S.-F.; Xie, X.-L, Shen, J.-J.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 11483.  doi: 10.1002/anie.201105485

    9. [9]

      Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119, 6207.  doi: 10.1021/ja970654g

    10. [10]

      Schulze, C. J.; Navarro, G.; Ebert, D.; DeRisi, J.; Linington, R. G. J. Org. Chem. 2015, 80, 1312.  doi: 10.1021/jo5024409

    11. [11]

      Cholongitas, E.; Papatheodoridis, G. V. Ann. Gastroenterol. 2014, 27, 331.

    12. [12]

      Clarion, L.; Jacquard, C.; Sainte-Catherine, O.; Loiseau, S.; Filippini, D.; Hirlemann, M.-H.; Volle, J.-N.; Virieux, D.; Lecouvrey, M.; Pirat, J.-L.; Bakalara, N. J. Med. Chem. 2012, 55, 2196.  doi: 10.1021/jm201428a

    13. [13]

      (a) Baraniak, J.; Kinas, R. W.; Lesiak, K.; Stec, W. J. J. Chem. Soc. 1979, 940. (b) Dostmann, W. R. G.; Taylor, S. S.; Genieser, H.-G.; Jastorff, B.; Døskeland, S. O.; Øgreid, D. J. Biol. Chem. 1990, 265, 10484.

    14. [14]

      Matsukawa, M.; Sugama, H.; Imamoto, T. Tetrahedron Lett. 2000, 41, 6461.  doi: 10.1016/S0040-4039(00)01030-3

    15. [15]

      (a) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kobayashi, Y. Tetrahedron Lett. 1996, 37, 5149. (b) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kishimoto, S. Tetrahedron 1997, 53, 3513.

    16. [16]

      Xu, G.; Senanayake, C. H.; Tang, W. Acc. Chem. Res. 2019, 52, 1101.  doi: 10.1021/acs.accounts.9b00029

    17. [17]

      Selected examples using P-chiral phosphines as ligands: (a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946. (b) Gridnev, I. D.; Higashi, N.; Asakura, K.; Imamoto, T. J. Am. Chem. Soc. 2000, 122, 7183. (c) Tang, W.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 1612. (d) Taylor, A. M.; Altman, R. A.; Buchwald S. L. J. Am. Chem. Soc. 2009, 131, 9900. (e) Imamoto, T.; Tamura, K.; Zhang, Z.; Horiuchi, Y.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Gridnev, I. D. J. Am. Chem. Soc. 2012, 134, 1754. (f) Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, W. Angew. Chem., Int. Ed. 2013, 52, 4235. Selected examples using P-chiral phosphine as organocatalysts: (g) Sampath, M.; Loh, T.-P. Chem. Sci. 2010, 1, 739. (h) Rémond, E.; Bayardon, J.; Takizawa, S.; Rousselin, Y.; Sasai; H.; Jugé, S. Org. Lett. 2013, 15, 1870. (i) Takizawa, S.; Rémond, E.; Arteaga, F.; Yoshida, Y.; Sridharan, V.; Bayardon, J.; Jugé, S.; Sasai, H. Chem. Commun. 2013, 49, 8392. (j) Henry, C. E.; Xu, Q.-H.; Fan, Y.-C.; Martin, T. J.; Belding, L.; Dudding, T.; Kwon, O. J. Am. Chem. Soc. 2014, 136, 11890.

    18. [18]

    19. [19]

      Selected examples for chiral resolution: see ref. 17a, and (a) Korpiun, O.; Lewis, R. A.; Chickos, J.; Mislow, K. J. Am. Chem. Soc. 1968, 90 4842. For chiral auxiliaries: (b) Berger, O.; Montchamp, J.-L. Angew. Chem., Int. Ed. 2013, 52, 11377. (c) Han, Z. S.; Goyal, N.; Herbage, M. A.; Sieber, J. D.; Qu, B.; Xu, Y.; Li, Z.; Reeves, J. T.; Desrosiers, J.-N.; Ma, S.; Grinberg, N.; Lee, H.; Mangunuru, H. P. R.; Zhang, Y.; Krishnamurthy, D.; Lu, B. Z.; Song, J. J.; Wang, G.; Senanayake, C. H. J. Am. Chem. Soc. 2013, 135, 2474. (d) Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Chem. Eur. J. 2014, 20, 12421. For asymmetric oxidation of tertiary phosphines: (e) Bergin, E.; O'Connor, C. T.; Robinson, S. B.; McGarrigle, E. M.; O'Mahony, C. P.; Gilheany, D. G. J. Am. Chem. Soc. 2007, 129 9566. (f) Rajendran, K. V.; Kennedy, L.; Gilheany, D. G. Eur. J. Org. Chem. 2010, 5642. (g) Nikitin, K.; Rajendran, K. V.; Müller-Bunz, H.; Gilheany, D. G. Angew. Chem., Int. Ed. 2014, 53, 1906.

    20. [20]

      (a) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330. (b) Petersen, K. S. Tetrahedron Lett. 2015, 56, 6523. (c) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765.

    21. [21]

      Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. Angew. Chem., Int. Ed. 2008, 47, 3410.  doi: 10.1002/anie.200800144

    22. [22]

      Zheng, Y.; Guo, L.; Zi, W. Org. Lett. 2018, 20, 7039.  doi: 10.1021/acs.orglett.8b02982

    23. [23]

      Zhang, Y.; Zhang, F.; Chen, L.; Xu, J.; Liu, X.; Feng, X. ACS Catal. 2019, 9, 4834.  doi: 10.1021/acscatal.9b00860

    24. [24]

      Zhu, R. Y.; Chen, L.; Hu, X. S.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 97.  doi: 10.1039/C9SC04938J

    25. [25]

      (a) Meng, J.-C.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett. 2005, 46, 4543. (b) Stephenson, G. R.; Buttress, J. P.; Deschamps, D.; Lancelot, M.; Martin, J. P.; Sheldon, A. I. G.; Alayrac, C.; Gaumont, A.-C.; Page, P. C. B. Synlett 2013, 24, 2723. (c) Song, T.; Li, L.; Zhou, W.; Zheng, Z.-J.; Deng, Y.; Xu, Z.; Xu, L.-W. Chem. Eur. J. 2015, 21, 554. (d) Chen, M.-Y.; Song, T.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. RSC Adv. 2016, 6, 58698. (e) Chen, M.-Y.; Xu, Z.; Chen, L.; Song, T.; Zheng, Z.-J.; Cao, J.; Cui, Y.-M., Xu, L.-W. ChemCatChem 2018, 10, 280. For achiral version: (f) Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem., Int. Ed. 2005, 44, 2210.

    26. [26]

      (a) Worrell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013, 340, 457. (b) Díez, J.; Gamasa, M. P.; Panera, M. Inorg. Chem. 2006, 45, 10043.

    27. [27]

      Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.; Yu, Y.-H.; Zhou, J. J. Am. Chem. Soc. 2013, 135 10994.  doi: 10.1021/ja4066656

    28. [28]

      (a) Osako, T.; Uozumi, Y. Org. Lett. 2014, 16, 5866. (b) Osako, T.; Uozumi, Y. Synlett 2015, 26, 1475.

    29. [29]

      For reviews: (a) Ren, Y.; Baumgartner, T. Dalton Trans. 2012, 41, 7792. (b) Matano, Y.; Imahori, H. Org. Biomol. Chem. 2009, 7, 1258. For recent examples: (c) Stolar, M.; Borau-Garcia, J.; Toonen, M.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 3366. (d) Yamaguchi, E.; Wang, C.; Fukazawa, A.; Taki, M.; Sato, Y.; Sasaki, T.; Ueda, M.; Sasaki, N.; Higashiyama, T.; Yamaguchi, S. Angew. Chem., Int. Ed. 2015, 54, 4539. (e) Reus, C.; Stolar, M.; Vanderkley, J.; Nebauer, J.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 11710.

    30. [30]

      Tahara, Y.-K.; Sato, T.; Matsubara, R.; Kanyiva, K. S.; Shibata, T. Heterocycles 2016, 93, 685.  doi: 10.3987/COM-15-S(T)57

    31. [31]

      Harvey, J. S.; Malcolmson, S. J.; Dunne, K. S.; Meek, S. J.; Thompson, A. L.; Schrock, R. R.; Hoveyda, A. H.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 762.  doi: 10.1002/anie.200805066

    32. [32]

      Wang, Z.; Hayashi. T. Angew. Chem., Int. Ed. 2018, 57, 1702.  doi: 10.1002/anie.201712572

    33. [33]

      For selected reviews on C-H bond functionalization, see: (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (c) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712. (d) Albrecht, M. Chem. Rev. 2010, 110, 576. (e) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (f) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.

    34. [34]

      Du, Z.-J.; Guan, J.; Wu, G.-J.; Xu, P.; Gao, L.-X.; Han, F.-S. J. Am. Chem. Soc. 2015, 137, 632.  doi: 10.1021/ja512029x

    35. [35]

      Guan, J.; Wu, G.-J.; Han, F.-S. Chem. Eur. J. 2014, 20, 3301.  doi: 10.1002/chem.201303056

    36. [36]

      (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882. (b) Shi, B.-F.; Zhang, Y.-H.; Lam, J.-K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (c) Yang, Y.-F.; Hong, X.; Yu, J.-Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853.

    37. [37]

      Sun, Y.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 364.  doi: 10.1002/anie.201606637

    38. [38]

      Gwon, D.; Park, S.; Chang, S. Tetrahedron 2015, 71, 4504.  doi: 10.1016/j.tet.2015.02.065

    39. [39]

      Jang, Y.-S.; Dieckmann, M.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 15088.

    40. [40]

      Jang, Y.-S.; Woźniak, Ł.; Pedroni, J.; Cramer, N. Angew. Chem., Int. Ed. 2018, 57, 12901.  doi: 10.1002/anie.201807749

    41. [41]

      Lin, Z.-Q.; Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew. Chem., Int. Ed. 2015, 54, 6265.  doi: 10.1002/anie.201500201

    42. [42]

      Liu, L.; Zhang, A.-A.; Wang, Y.; Zhang, F.; Zuo, Z.; Zhao, W.-X.; Feng, C.-L.; Ma, W. Org. Lett. 2015, 17, 2046.  doi: 10.1021/acs.orglett.5b00122

    43. [43]

      Lin, Y.; Ma, W.-Y.; Sun, Q.-Y.; Cui, Y.-M.; Xu, L.-W. Synlett 2017, 28, 1432.  doi: 10.1055/s-0036-1588983

    44. [44]

      Li, Z.; Lin, Z.-Q.; Yan, C.-G.; Duan, W.-L. Organometallics 2019, 38, 3916.  doi: 10.1021/acs.organomet.9b00216

    45. [45]

      Xu, G. Q.; Li, M. H.; Wang, S. L.; Tang, W. J. Org. Chem. Front. 2015, 2, 1342.  doi: 10.1039/C5QO00142K

    46. [46]

      Huang, Z.; Huang, X.; Li, B.; Mou, C.; Yang, S.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7524.  doi: 10.1021/jacs.6b04624

    47. [47]

      Yang, G.-H.; Li, Y.; Li, X.; Cheng, J.-P. Chem. Sci. 2019, 10, 4322.

    48. [48]

      Toda, Y.; Pink, M.; Johnston, J. N. J. Am. Chem. Soc. 2014, 136, 14734.  doi: 10.1021/ja5088584

    49. [49]

      Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2011, 134, 6068.

    50. [50]

      Trost, B. M.; Spohr, S. M.; Rolka, A. B.; Kalnmals, C. A. J. Am. Chem. Soc. 2019, 141, 14098.  doi: 10.1021/jacs.9b07340

    51. [51]

      Liu, S.; Zhang, Z. F.; Xie, F.; Butt, N. A.; Sun, L.; Zhang, W. B. Tetrahedron Asymmetry 2012, 23, 329.  doi: 10.1016/j.tetasy.2012.02.018

    52. [52]

      Sun, Y.; Cramer, N. Chem. Sci. 2018, 9, 2981.  doi: 10.1039/C7SC05411D

    53. [53]

      Lim, K. M.-H.; Hayashi, T. J. Am. Chem. Soc. 2017, 139, 8122.  doi: 10.1021/jacs.7b04570

    54. [54]

      Emmick, T. L.; Letsinger, R. L. J. Am. Chem. Soc. 1968, 90, 3459.  doi: 10.1021/ja01015a030

    55. [55]

      Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.; Wang, J.; Tan, C.-H. Angew. Chem., Int. Ed. 2009, 48, 7387.  doi: 10.1002/anie.200903971

    56. [56]

      Xie, P. Z.; Guo, L.; Xu, L. L.; Loh, T.-P. Chem. Asian J. 2016, 11, 1353.  doi: 10.1002/asia.201600108

    57. [57]

      (a) Zhang, H.; Sun, Y.-M.; Yao, L.; Ji, S.-Y.; Zhao, C.-Q.; Han, L.-B. Chem. Asian J. 2014, 9, 1329. (b) Wang, J.-P.; Nie, S.-Z.; Zhou, Z.-Y.; Ye, J.-J.; Wen, J.-H.; Zhao, C.-Q. J. Org. Chem. 2016, 81, 7644.

    58. [58]

      Du, J.-Y.; Ma, Y.-H.; Yuan, R.-Q.; Xin, N. N.; Nie, S.-Z.; Ma, C.-L.; Li, C.-Z.; Zhao, C.-Q. Org. Lett. 2018, 20, 477.  doi: 10.1021/acs.orglett.7b03863

    59. [59]

      Beaud, R.; Phipps, R. J.; Gaunt, M. J. J. Am. Chem. Soc. 2016, 138, 13183.  doi: 10.1021/jacs.6b09334

    60. [60]

      Zhang, Y.; He, H.; Wang, Q. Y.; Cai, Q. Tetrahedron Lett. 2016, 57, 5308.  doi: 10.1016/j.tetlet.2016.10.048

    61. [61]

      Dai, Q.; Li, W.-B.; Li, Z.-M.; Zhang, J.-L. J. Am. Chem. Soc. 2019, 141, 20556.  doi: 10.1021/jacs.9b11938

    62. [62]

      Liu, X.-T.; Zhang, Y.-Q.; Han, X.-Y.; Sun, S.-P.; Zhang, Q.-W. J. Am. Chem. Soc. 2019, 141, 16584.  doi: 10.1021/jacs.9b08734

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(172)
  • Abstract views(4495)
  • HTML views(1083)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return