Citation: Deng Yingyi, Qian Yinyin, Xie Ying, Zhang Lei, Zheng Bing, Lou Yuanqing, Yu Haitao. Effect of Li Adsorption on Work Function Modulation of Bilayer α-Borophene: A Theoretical Study[J]. Acta Chimica Sinica, ;2020, 78(4): 344-354. doi: 10.6023/A19120455 shu

Effect of Li Adsorption on Work Function Modulation of Bilayer α-Borophene: A Theoretical Study

  • Corresponding author: Zheng Bing, zhengbing@hlju.edu.cn
  • † These authors contributed equally to this work.
    Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn
  • Received Date: 29 December 2019
    Available Online: 24 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21601054, 11871198, 11801116), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province of China (No. UNPYSCT-2017126), and the Training Program of Innovation and Entrepreneurship for Undergraduates of Heilongjiang Province (No. 201910212073)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province of China UNPYSCT-2017126the National Natural Science Foundation of China 11871198the National Natural Science Foundation of China 21601054the Training Program of Innovation and Entrepreneurship for Undergraduates of Heilongjiang Province 201910212073the National Natural Science Foundation of China 11801116

Figures(12)

  • As a new member of the two-dimensional nanomaterial family, borophene is regarded as a potential material platform for nanoscale electronic devices. Especially, borophene-based electrodes have potential application values in light-emitting diodes, organic light-emitting diodes, organic solar cells and field emitters. Therefore, the work function modulation (to an optimal value) of borophene is highly important to maximize the energy conversion efficiency and performance of the device. Based on the first-principles density functional theory, the effects of Li adsorption on the structure, electronic properties and work function of double-layer α-borophene (DBBP) are studied. The calculation results show that Li adsorption can effectively adjust the work function of DBBP from 4.65 eV to 1.96~4.46 eV with different Li contents. This engineering range is superior to what are reported in the literatures for Li-adsorbed monolayer BBP (modified from 4.16 eV to 2.31~3.67 eV), and double-layer graphene with intercalated Li (3.4~3.9 eV) and K (3.3~3.8 eV). The work functions of Li2(D)/DBBP (3.73 eV) and Li3(D)/DBBP (2.91 eV) are close to the commonly used electrode materials Mg and Ca, respectively, while the work function of Li4(D)/DBBP is even lower than Ca. In addition, the factors that affect the work function reduction of Lin/DBBP relative to DBBP, such as configuration, substrate deformation, binding energy, electron transfer, charge rearrangement, electrostatic potential, vacuum and Fermi level, are systematically studied. The results demonstrate that the decrease in the Lin/DBBP work function is mainly due to the change in Fermi level, while the change in vacuum level only plays a minor role. Apart from that, the deformation of the substrate does not have a positive effect on the reduction of the Lin/DBBP work function, but the electron transfer from the adsorbed atoms to the matrix (charge redistribution caused by chemical effects) is the inherent reason for the decrease in the Lin/DBBP work function. This study shows that Li adsorption is a simple and effective method to reduce the work function of DBBP. Due to its metallic character and extremely low work function, Li-adsorbed DBBP nanomaterials can be utilized as cathode materials in electronic devices.
  • 加载中
    1. [1]

      Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P. Science 2015, 350, 1513.  doi: 10.1126/science.aad1080

    2. [2]

      Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Nat. Chem. 2016, 8, 563.  doi: 10.1038/nchem.2491

    3. [3]

      Zhang, D.; Yuan, Z.; Zhang, G.; Tian, N.; Liu, D.; Zhang, Y. Acta Chim. Sinica 2018, 76, 537(in Chinese).
       

    4. [4]

      Yuan, Z.; Liu, D.; Tian, N.; Zhang, G.; Zhang, Y. Acta Chim. Sinica 2016, 74, 488(in Chinese).
       

    5. [5]

      Han, Y.; Geng, Z.; Wang, Y.; Liang, J.; Yan, P. Acta Chim. Sinica 2009, 67, 773(in Chinese).

    6. [6]

      Zhang, L.; Gao, S.; Liu, W.; Tang, R.; Shang, N.; Wang, C.; Wang, Z. Chin. J. Org. Chem. 2014, 34, 1542(in Chinese).

    7. [7]

      Chang, Z.-W.; Meng, F.-L.; Zhong, H.-X.; Zhang, X.-B. Chin. J. Chem. 2018, 36, 287.  doi: 10.1002/cjoc.201700752

    8. [8]

      Xu, Z.; Li, Y.; Shi, P.; Wang, B.; Huang, X. Chin. J. Org. Chem. 2013, 33, 2162(in Chinese).

    9. [9]

      Galeev, T. R.; Chen, Q.; Guo, J.-C.; Bai, H.; Miao, C.-Q.; Lu, H.-G.; Sergeeva, A. P.; Li, S.-D.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2011, 13, 11575.  doi: 10.1039/c1cp20439d

    10. [10]

      Sun, X.; Liu, X.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X.; Yu, M.; Li, J.; Tai, G.; Guo, W. Adv. Funct. Mater. 2016, 27, 1603300.

    11. [11]

      Zheng, B.; Yu, H.-T.; Lian, Y.-F.; Xie, Y. Chem. Phys. Lett. 2016, 648, 81.  doi: 10.1016/j.cplett.2016.01.074

    12. [12]

      Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. C. ACS Nano 2012, 6, 7443.  doi: 10.1021/nn302696v

    13. [13]

      Mannix, A. J.; Zhang, Z.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Nat. Nanotechnol. 2018, 13, 444.  doi: 10.1038/s41565-018-0157-4

    14. [14]

      Zhong, Q.; Kong, L.; Gou, J.; Li, W.; Sheng, S.; Yang, S.; Cheng, P.; Li, H.; Wu, K.; Chen, L. Phys. Rev. Mater. 2017, 1, 021001.  doi: 10.1103/PhysRevMaterials.1.021001

    15. [15]

      Xie, S.-Y.; Wang, Y.; Li, X.-B. Adv. Mater. 2019, 31, 1900392.  doi: 10.1002/adma.201900392

    16. [16]

      Wang, Q.; Xue, M.; Zhang, Z. Acta Phys. Chim. Sin. 2019, 35, 565(in Chinese).  doi: 10.3866/PKU.WHXB201805080

    17. [17]

      Zhong, Q.; Zhang, J.; Cheng, P.; Feng, B.; Li, W.; Sheng, S.; Li, H.; Meng, S.; Chen, L.; Wu, K. J. Phys.:Condens. Matter 2017, 29, 095002.  doi: 10.1088/1361-648X/aa5165

    18. [18]

      Li, W.; Kong, L.; Chen, C.; Gou, J.; Sheng, S.; Zhang, W.; Li, H.; Chen, L.; Cheng, P.; Wu, K. Sci. Bull. 2018, 63, 282.  doi: 10.1016/j.scib.2018.02.006

    19. [19]

      Kiraly, B.; Liu, X.; Wang, L.; Zhang, Z.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. ACS Nano 2019, 13, 3816.  doi: 10.1021/acsnano.8b09339

    20. [20]

      Wu, R.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Bozovic, I.; Gozar, A. Nat. Nanotechnol. 2019, 14, 44.  doi: 10.1038/s41565-018-0317-6

    21. [21]

      Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Adv. Mater. 2019, 31, 1900353.  doi: 10.1002/adma.201900353

    22. [22]

      Wang, Z.-Q.; Lu, T.-Y.; Wang, H.-Q.; Feng, Y. P.; Zheng, J.-C. Front. Phys. 2019, 14, 33403.  doi: 10.1007/s11467-019-0884-5

    23. [23]

      Zhang, Z.; Yang, Y.; Gao, G.; Yakobson, B. I. Angew. Chem. Int. Ed. 2015, 54, 13022.  doi: 10.1002/anie.201505425

    24. [24]

      Zhang, Z.; Mannix, A. J.; Hu, Z.; Kiraly, B.; Guisinger, N. P.; Hersam, M. C.; Yakobson, B. I. Nano Lett. 2016, 16, 6622.  doi: 10.1021/acs.nanolett.6b03349

    25. [25]

      Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Nano Lett. 2012, 12, 2441.  doi: 10.1021/nl3004754

    26. [26]

      Xiao, H.; Cao, W.; Ouyang, T.; Guo, S.; He, C.; Zhong, J. Sci. Rep. 2017, 7, 45986.  doi: 10.1038/srep45986

    27. [27]

      Adamska, L.; Sadasiyam, S.; Foley, J. J.; Darancet, P.; Sharifzadeh, S. J. Phys. Chem. C 2018, 122, 4037.  doi: 10.1021/acs.jpcc.7b10197

    28. [28]

      Penev, E. S.; Kutana, A.; Yakobson, B. I. Nano Lett. 2016, 16, 2522.  doi: 10.1021/acs.nanolett.6b00070

    29. [29]

      Jiang, H. R.; Lu, Z. H.; Wu, M. C.; Ciucci, F.; Zhao, T. S. Nano Energy 2016, 23, 97.  doi: 10.1016/j.nanoen.2016.03.013

    30. [30]

      Lebon, A.; Aguilera-del-Toro, R. H.; Gallego, L. J.; Vega, A. Int. J. Hydrogen Energy 2019, 44, 1021.  doi: 10.1016/j.ijhydene.2018.10.241

    31. [31]

      Shukla, V.; Warna, J.; Jena, N. K.; Grigoriev, A.; Ahuja, R. J. Phys. Chem. C 2017, 121, 26869.  doi: 10.1021/acs.jpcc.7b09552

    32. [32]

      Singh, Y.; Back, S.; Jung, Y. Phys. Chem. Chem. Phys. 2018, 20, 21095.  doi: 10.1039/C8CP03130D

    33. [33]

      Chen, Y.; Yu, G.; Chen, W.; Liu, Y.; Li, G.-D.; Zhu, P.; Tao, Q.; Li, Q.; Liu, J.; Shen, X.; Li, H.; Huang, X.; Wang, D.; Asefa, T.; Zou, X. J. Am. Chem. Soc. 2017, 139, 12370.  doi: 10.1021/jacs.7b06337

    34. [34]

      Shen, H.; Li, Y.; Sun, Q. Nanoscale 2018, 10, 11064.  doi: 10.1039/C8NR01855C

    35. [35]

      Rao, D.; Zhang, L.; Meng, Z.; Zhang, X.; Wang, Y.; Qiao, G.; Shen, X.; Xia, H.; Liu, J.; Lu, R. J. Mater. Chem. A 2017, 5, 2328.  doi: 10.1039/C6TA09730H

    36. [36]

      Leng, S.; Sun, X.; Yang, Y.; Zhang, R. Mater. Res. Express 2019, 6, 085504.  doi: 10.1088/2053-1591/ab1a88

    37. [37]

      Jiang, H. R.; Shyy, W.; Liu, M.; Ren, Y. X.; Zhao, T. S. J. Mater. Chem. A 2018, 6, 2107.  doi: 10.1039/C7TA09244J

    38. [38]

      Xu, S.-G.; Li, X.-T.; Zhao, Y.-J.; Liao, J.-H.; Xu, W.-P.; Yang, X.-B.; Xu, H. J. Am. Chem. Soc. 2017, 139, 17233.  doi: 10.1021/jacs.7b08680

    39. [39]

      Kistanov, A. A.; Cai, Y.; Zhou, K.; Srikanth, N.; Dmitriev, S. V.; Zhang, Y.-W. Nanoscale 2018, 10, 1403.  doi: 10.1039/C7NR06537J

    40. [40]

      Garcia-Fuente, A.; Carrete, J.; Vega, A.; Gallego, L. J. Phys. Chem. Chem. Phys. 2017, 19, 1054.  doi: 10.1039/C6CP07432D

    41. [41]

      Zhou, X.-F.; Oganov, A. R.; Wang, Z.; Popov, I. A.; Boldyrev, A. I.; Wang, H.-T. Phys. Rev. B 2016, 93, 085406.  doi: 10.1103/PhysRevB.93.085406

    42. [42]

      Gao, M.; Li, Q.-Z.; Yan, X.-W.; Wang, J. Phys. Rev. B 2017, 95, 024505.  doi: 10.1103/PhysRevB.95.024505

    43. [43]

      Zhong, H.; Huang, K.; Yu, G.; Yuan, S. Phys. Rev. B 2018, 98, 054104.  doi: 10.1103/PhysRevB.98.054104

    44. [44]

      Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. ACS Nano 2018, 12, 1262.  doi: 10.1021/acsnano.7b07444

    45. [45]

      Zheng, B.; Qiao, L.; Yu, H.-T.; Wang, Q.-Y.; Xie, Y.; Qu, C.-Q. Phys. Chem. Chem. Phys. 2018, 20, 15139.  doi: 10.1039/C8CP01048J

    46. [46]

      Zhang, Z.; Penev, E. S.; Yakobson, B. I. Chem. Soc. Rev. 2017, 46, 6746.  doi: 10.1039/C7CS00261K

    47. [47]

      Kwon, K. C.; Choi, K. S.; Kim, S. Y. Adv. Funct. Mater. 2012, 22, 4724.  doi: 10.1002/adfm.201200997

    48. [48]

      Jia, T.; Zheng, N.; Cai, W.; Ying, L.; Huang, F. Acta Chim. Sinica 2017, 75, 808(in Chinese).

    49. [49]

      Zhang, K.; Guan, X.; Huang, F.; Cao, Y. Acta Chim. Sinica 2012, 70, 2489(in Chinese).

    50. [50]

      Xu, J.; Chang, Y.; Gan, L.; Ma, Y.; Zhai, T. Adv. Sci. 2015, 2, 1500023.  doi: 10.1002/advs.201500023

    51. [51]

      Bezugly, V.; Kunstmann, J.; Grundkötter-Stock, B.; Frauenheim, T.; Niehaus, T.; Cuniberti, G. ACS Nano 2011, 5, 4997.  doi: 10.1021/nn201099a

    52. [52]

      Zheng, B.; Yu, H.-T.; Xie, Y.; Lian, Y.-F. ACS Appl. Mater. Interfaces 2014, 6, 19690.  doi: 10.1021/am504674p

    53. [53]

      Kumar, P. V.; Bernardi, M.; Grossman, J. C. ACS Nano 2013, 7, 1638.  doi: 10.1021/nn305507p

    54. [54]

      He, C.; Yu, Z.; Sun, L. Z.; Zhong, J. X. J. Comput. Theor. Nanosci. 2012, 9, 16.  doi: 10.1166/jctn.2012.1990

    55. [55]

      Xie, Y.; Yu, H.; Zhang, H.; Fu, H. Phys. Chem. Chem. Phys. 2012, 14, 4391.  doi: 10.1039/c2cp23964g

    56. [56]

      Kwon, K. C.; Choi, K. S.; Kim, B. J.; Lee, J. L.; Kim, S. Y. J. Phys. Chem. C 2012, 116, 26586.  doi: 10.1021/jp3069927

    57. [57]

      Huang, J. H.; Fang, J. H.; Liu, C. C.; Chu, C. W. ACS Nano 2011, 5, 6262.  doi: 10.1021/nn201253w

    58. [58]

      Hao, J.-H.; Wang, Z.-J.; Wang, Y.-F.; Yin, Y.-H.; Jiang, R.; Jin, Q.-H. Solid State Sci. 2015, 50, 69.  doi: 10.1016/j.solidstatesciences.2015.10.015

    59. [59]

      Yi, T.; Zheng, B.; Yu, H.; Xie, Y. Chem. Res. Chin. Univ. 2017, 33, 631.  doi: 10.1007/s40242-017-7038-5

    60. [60]

      Zheng, B.; Xie, Y.; Deng, Y.-Y.; Wang, Z.-Q.; Lou, Y.-Q.; Qian, Y.-Y.; He, J.; Yu, H.-T. Adv. Theory Simul. 2020, 1900249.

    61. [61]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    62. [62]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787.  doi: 10.1002/jcc.20495

    63. [63]

      Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  doi: 10.1103/PhysRevB.13.5188

    64. [64]

      Olsen, R. A.; Kroes, G. J.; Henkelman, G.; Arnaldsson, A.; Jónsson, H. J. Chem. Phys. 2004, 121, 9776.  doi: 10.1063/1.1809574

    65. [65]

      Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978.  doi: 10.1063/1.1323224

    66. [66]

      Delley, B. J. Chem. Phys. 1990, 92, 508.  doi: 10.1063/1.458452

    67. [67]

      Tang, H.; Ismail-Beigi, S. Phys. Rev. Lett. 2007, 99, 115501.  doi: 10.1103/PhysRevLett.99.115501

    68. [68]

      Banerjee, S.; Periyasamy, G.; Pati, S. K. J. Mater. Chem. A 2014, 2, 3856.  doi: 10.1039/c3ta14041e

    69. [69]

      Zhang, X.; Hu, J.; Cheng, Y.; Yang, H. Y.; Yao, Y.; Yang, S. A. Nanoscale 2016, 8, 15340.  doi: 10.1039/C6NR04186H

    70. [70]

      Jiang, H. R.; Lu, Z. H.; Wu, M. C.; Ciucci, F.; Zhao, T. S. Nano Energy 2016, 23, 97.  doi: 10.1016/j.nanoen.2016.03.013

    71. [71]

      Jin, K. H.; Choi, S. M.; Jhi, S. H. Phys. Rev. B 2010, 82, 033414.

    72. [72]

      Zhang, H. ACS Nano 2015, 9, 9451.  doi: 10.1021/acsnano.5b05040

    73. [73]

      An, H.; Liu, C.-S.; Zeng, Z. Phys. Rev. B 2011, 83, 115456.  doi: 10.1103/PhysRevB.83.115456

    74. [74]

      Li, Y.; Zhou, G.; Li, J.; Gu, B.-L.; Duan, W. J. Phys. Chem. C 2008, 112, 19268.  doi: 10.1021/jp807156g

    75. [75]

      Wang, Y. S.; Wang, F.; Li, M.; Xu, B.; Sun, Q.; Jia, Y. Appl. Surf. Sci. 2012, 258, 8874.  doi: 10.1016/j.apsusc.2012.05.107

    76. [76]

      Liu, F.; Shen, C.; Su, Z.; Ding, X.; Deng, S.; Chen, J.; Xu, N.; Gao, H. J. Mater. Chem. 2010, 20, 2197.  doi: 10.1039/b919260c

    77. [77]

      Bae, G.; Cha, J.; Lee, H.; Park, W.; Park, N. Carbon 2012, 50, 851.  doi: 10.1016/j.carbon.2011.09.044

    78. [78]

      Michaelson, H. B. J. Appl. Phys. 1977, 48, 5.  doi: 10.1063/1.323361

    79. [79]

      Lorenzo, M.; Escher, C.; Latychevskaia, T.; Fink, H.-W. Nano Lett. 2018, 18, 3421.  doi: 10.1021/acs.nanolett.8b00359

    80. [80]

      Wang, G.; Shen, X.; Yao, J.; Park, J. Carbon 2009, 47, 2049.  doi: 10.1016/j.carbon.2009.03.053

    81. [81]

      Pan, D.; Wang, S.; Zhao, B.; Wu, M.; Zhang, H.; Wang, Y.; Jiao, Z. Chem. Mater. 2009, 21, 3136.  doi: 10.1021/cm900395k

    82. [82]

      Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. J. Am. Chem. Soc. 2010, 132, 12556.  doi: 10.1021/ja106162f

    83. [83]

      Fan, X.; Zheng, W. T.; Kuo, J.-L. ACS Appl. Mater. Interfaces 2012, 4, 2432.  doi: 10.1021/am3000962

    84. [84]

      Er, S.; de Wijs, G. A.; Brocks, G. J. Phys. Chem. C 2009, 113, 18962.  doi: 10.1021/jp9077079

    85. [85]

      Peng, X.; Tang, F.; Copple, A. J. Phys.:Condens. Matter 2012, 24, 075501.  doi: 10.1088/0953-8984/24/7/075501

    86. [86]

      Shan, B.; Cho, K. Phys. Rev. Lett. 2005, 94, 236602.  doi: 10.1103/PhysRevLett.94.236602

    87. [87]

      Leung, T. C.; Kao, C. L.; Su, W. S.; Feng, Y. J.; Chan, C. T. Phys. Rev. B 2003, 68, 195408.  doi: 10.1103/PhysRevB.68.195408

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    11. [11]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    12. [12]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

Metrics
  • PDF Downloads(8)
  • Abstract views(2045)
  • HTML views(342)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return