Citation: Liu Yang, Xia Xiaoxiao, Tan Yuanyuan, Li Song. O2/N2 Separation Performance of MIL-101(Cr)/Graphene Oxide[J]. Acta Chimica Sinica, ;2020, 78(3): 250-255. doi: 10.6023/A19120449 shu

O2/N2 Separation Performance of MIL-101(Cr)/Graphene Oxide

  • Corresponding author: Li Song, songli@hust.edu.cn
  • Received Date: 26 December 2019
    Available Online: 21 February 2020

    Fund Project: the Double First-class Research Funding of China-EU Institute for Clean and Renewable Energy ICARE-RP-2018-HYDRO-001Project supported by the National Natural Science Foundation of China (No. 51672097) and the Double First-class Research Funding of China-EU Institute for Clean and Renewable Energy (No. ICARE-RP-2018-HYDRO-001)the National Natural Science Foundation of China 51672097

Figures(7)

  • The pressure-swing adsorption (PSA) technology is the promising approach for O2/N2 separation because of its low cost and facile manipulation, in which adsorbents dominate the separation performance. In recent years, metal-organic frameworks (MOFs) have been recognized as the most potential adsorbents in gas adsorption and separation due to their ultrahigh surface area. In this work, MIL-101(Cr) with different weight percentages of graphene oxide (5%, 15% and 35%) was prepared by growing MIL-101(Cr) on pre-synthesized GO materials. The final product was activated under vacuum at 180℃ for 12 h. Structure characterization of different MIL-101(Cr)/GO composites revealed that MIL-101(Cr)/GO-15 with 15% GO additive exhibited the highest specific surface area (3486 m2·g-1) and pore volume (2.39 cm3·g-1) compared with pristine MIL-101(Cr) and the composites with 5% and 35% GO additives. The high surface area and pore volume are beneficial for the O2 uptake of MIL-101(Cr)/GO-15. Compared with the O2 uptake of MIL-101(Cr)/GO-5 (0.35 mmol·g-1) and MIL-101(Cr)/GO-35 (0.31 mmol·g-1), MIL-101(Cr)/GO-15 exhibited the highest uptake of 0.54 mmol·g-1. Further pore size distribution analysis demonstrated that the enhanced O2 uptake of MIL-101(Cr)/GO-15 can be ascribed to its increased fraction of mesopores. On the other hand, O2/N2 selectivity of different MIL-101(Cr)/GO composites was also calculated according to ideal adsorbed solution theory (IAST), from which it was found that MIL-101(Cr)/GO-15 displayed the highest O2/N2 selectivity (1.2) in a binary gas mixture with the volume fraction of O2/N2=1/4. Compared with pristine MIL-101, O2/N2 selectivity of MIL-101(Cr)/GO-15 was increased by 17.65%. Recyclability is one of the most important criteria to evaluate the gas adsorption performance of adsorbents. Therefore, the recyclability of MIL-101(Cr)/GO-15 was tested by measuring the O2 adsorption and desorption isotherms for three cycles. It was revealed that 80% of O2 uptake of MIL-101(Cr)/GO-15 was remained after three adsorp-tion/desorption cycles, implicating the outstanding recyclability of MIL-101(Cr)/GO-15.
  • 加载中
    1. [1]

      Townsend, J.; Braunscheidel, N. M.; Vogiatzis, K. D. J. Phys. Chem. A 2019, 123, 3315.  doi: 10.1021/acs.jpca.9b00912

    2. [2]

      Gulcay, E.; Erucar, I. Ind. Eng. Chem. Res. 2019, 58, 3225.  doi: 10.1021/acs.iecr.8b04084

    3. [3]

      Demir, H.; Stoneburner, S. J.; Jeong, W. S.; Ray, D.; Zhang, X.; Farha, O. K.; Cramer, C. J.; Siepmann, J. I.; Gagliardi, L. J. Phys. Chem. C 2019, 123, 12935.

    4. [4]

      Zhang, W.; Banerjee, D.; Liu, J.; Schaef, H. T.; Crum, J. V.; Fernandez, C. A.; Kukkadapu, R. K.; Nie, Z.; Nune, S. K.; Motkuri, R. K.; Chapman, K. W.; Engelhard, M. H.; Hayes, J. C.; Silvers, K. L.; Krishna, R.; McGrail, B. P.; Liu, J.; Thallapally, P. K. Adv. Mater. 2016, 28, 3572.  doi: 10.1002/adma.201600259

    5. [5]

      Zanota, M. L.; Heymans, N.; Gilles, F.; Su, B. L.; Frere, M.; De Weireld, G. J. Chem. Eng. Data 2010, 55, 448.  doi: 10.1021/je900539m

    6. [6]

      Hejazi, S. A. H.; Rajendran, A.; Sawada, J. A.; Kuznicki, S. M. Ind. Eng. Chem. Res. 2016, 55, 5993.  doi: 10.1021/acs.iecr.6b01560

    7. [7]

      Bian, S. J. Liming Chem. Ind. 1993, 2, 14.

    8. [8]

      McIntyre, S. M.; Shan, B.; Wang, R.; Zhong, C. W.; Liu, J.; Mu, B. Ind. Eng. Chem. Res. 2018, 57, 9240.  doi: 10.1021/acs.iecr.8b00981

    9. [9]

      Tan, K.; Zuluaga, S.; Gong, Q.; Gao, Y.; Nijem, N.; Li, J.; Thonhauser, T.; Chabal, Y. J. Chem. Mater. 2015, 27, 2203.  doi: 10.1021/acs.chemmater.5b00315

    10. [10]

      Verma, P.; Maurice, R.; Truhlar, D. G. J. Phys. Chem. C 2015, 119, 28499.  doi: 10.1021/acs.jpcc.5b10382

    11. [11]

      Wang, Y.; Yang, J. F.; Li, Z. J.; Zhang, Z. M.; Li, J. P.; Yang, Q. Y.; Zhong, C. L. RSC Adv. 2015, 5, 33432.  doi: 10.1039/C5RA04791A

    12. [12]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 304.
       

    13. [13]

      Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 324.
       

    14. [14]

      Yang, W. Y.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2018, 76, 786.  doi: 10.3866/PKU.WHXB201709292
       

    15. [15]

      Li, Y. W.; Yang, R. T. Langmuir 2007, 23, 12942.

    16. [16]

      Mu, B.; Schoenecker, P. M.; Walton, K. S. J. Phys. Chem. C 2010, 114, 6467.

    17. [17]

      Southon, P. D.; Price, D. J.; Nielsen, P. K.; McKenzie, C. J.; Kepert, C. J. J. Am. Chem. Soc. 2011, 133, 10885.  doi: 10.1021/ja202228v

    18. [18]

      Murray, L. J.; Dinca, M.; Yano, J.; Chavan, S.; Bordiga, S.; Brown, C. M.; Long, J. R. J. Am. Chem. Soc. 2010, 132, 7856.  doi: 10.1021/ja1027925

    19. [19]

      Parkes, M. V.; Sava Gallis, D. F.; Greathouse, J. A.; Nenoff, T. M. J. Phys. Chem. C 2015, 119, 6556.  doi: 10.1021/jp511789g

    20. [20]

      Sava Gallis, D. F.; Parkes, M. V.; Greathouse, J. A.; Zhang, X. Y.; Nenoff, T. M. Chem. Mater. 2015, 27, 2022.

    21. [21]

      Herrera-Rodríguez, F.; Martínez-Aguilar, E.; Guerrero-Sánchez, J.; Rodríguez, J. A.; Moreno-Armenta, M. G. Surf. Sci. 2019, 690, 121481.  doi: 10.1016/j.susc.2019.121481

    22. [22]

      Yan, J.; Yu, Y.; Xiao, J.; Li, Y. W.; Li, Z. Ind. Eng. Chem. Res. 2016, 55, 11768.

    23. [23]

      Petit, C.; Levasseur, B.; Mendoza, B.; Bandosz, T. J. Microporous Mesoporous Mater. 2012, 154, 107.  doi: 10.1016/j.micromeso.2011.09.012

    24. [24]

      Liu, P.; Yan, C. X.; Ling, Z. C.; Zhu, E. F.; Shi, Q. N. Mater. Rep. 2016, 30, 39.  doi: 10.11896/j.issn.1005-023X.2016.19.006

    25. [25]

      Jiang, M.; Li, H. Z.; Zhou, L. J.; Xing, R. F.; Zhang, J. M. ACS Appl. Mater. Interfaces 2018, 10, 827.  doi: 10.1021/acsami.7b17728

    26. [26]

      Su, H.; Du, Y.; Zhang, J. C.; Peng, P. P.; Li, S. H.; Chen, P. W.; Gozin, M.; Pang, S. P. ACS Appl. Mater. Interfaces 2018, 10, 32829.

    27. [27]

      Pokhrel, J. W.; Bhoria, N.; Anastasiou, S.; Tsoufis, T.; Gournis, D.; Romanos, G.; Karanikolos, G. N. Microporous Mesoporous Mater. 2018, 267, 54.  doi: 10.1016/j.micromeso.2018.03.012

    28. [28]

      Fu, D. Y.; Li, H. W.; Zhang, X. M.; Han, G. Y.; Zhou, H. H.; Chang, Y. Z. Mater. Chem. Phys. 2016, 179, 167.

    29. [29]

      Zhou, H.; Zhang, J.; Zhang, J.; Yan, X. F.; Shen, X. P.; Yuan, A. H. Int. J. Hydrogen Energy 2015, 40, 12276.

    30. [30]

      Zhou, H.; Liu, X. P.; Zhang, J.; Yan, X. F.; Liu, Y. J.; Yuan, A. H. Int. J. Hydrogen Energy 2014, 39, 2161.  doi: 10.1016/j.ijhydene.2013.11.109

    31. [31]

      Sun, X. J.; Xia, Q. B.; Zhao, Z. X.; Li, Y. W.; Li, Z. Chem. Eng. J. 2014, 239, 228.

    32. [32]

      Elsayed, E.; Wang, H. Y.; Anderson, P. A.; Al-Dadah, R.; Mahmoud, S.; Navarro, H.; Ding, Y. L.; Bowen, J. Microporous Mesoporous Mater. 2017, 244, 182.  doi: 10.1016/j.micromeso.2017.02.020

    33. [33]

      Liu, X. Q.; Zhou, H.; Zhang, Y.; Liu, Y. J.; Yuan, A. H. Chin. J. Chem. 2012, 30, 2564.

    34. [34]

      Pourreza, A.; Askari, S.; Rashidi, A.; Fakhraie, S.; Kooti, M.; Alavijeh, M. S. J. Ind. Eng. Chem. 2019, 71, 311.

    35. [35]

      Zheng, Y.; Chu, F. C.; Zhang, B.; Yan, J.; Chen, Y, L. Microporous Mesoporous Mater. 2018, 263, 73.

    36. [36]

      Zhou, X.; Huang, W. Y.; Liu, J.; Wang, H. H.; Li, Z. Chem. Eng. Sci. 2017, 167, 99.

    37. [37]

      Yan, J.; Yu, Y.; Ma, C.; Xiao, J.; Xia, Q. B.; Li, Y. W.; Li, Z. Appl. Therm. Eng. 2015, 84, 120.

    38. [38]

      Petit, C.; Bandosz, T. J. J. Colloid Interface Sci. 2015, 447, 149.
       

    39. [39]

      Myers, A. L.; Prausnitz, J. M. AIChE J. 1965, 11, 121.  doi: 10.1002/aic.690110125

    40. [40]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  doi: 10.1021/ja01539a017

    41. [41]

      Rallapalli, P. B. S.; Raj, M. C.; Senthilkumar, S.; Somani, R. S.; Bajaj, H. C. Environ. Prog. Sustainable Energy 2016, 35, 462.  doi: 10.1002/ep.12239

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    20. [20]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

Metrics
  • PDF Downloads(19)
  • Abstract views(2572)
  • HTML views(468)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return